[image: image343.png]

[image: image360.png]\WINDOWS\system32\CMD. exe -

\Hobofipps~one_table>ruby script/generate hobo_migration

Up Migration
reate_table fusers do it}

t.string :crypted password, :limit => 48
tlstring :sale, :Linit => 48 —
tlstring :iremember_token

t.datetine :remember_token_expires_at

tlstring :name

tlstring zemail address

€.hoolean
t.datetine
¢t datetine :updated_at
tlstring :state, idefault =
tldatetine :key tinestamp

adninistrator, default => false

created at

Vactive"

rop_table

hat nou:

[glenerate migration, generate and [mligrate now or [clancel? m

Migration filename:
Cyou can type spaces instead of ’_
Filenane [hoho_migration 11:
create dh/migrate
create db/migrate/20898324178438_hobo_migration_1.rh
Cin C:/HoboApps/one_tahle)

every little helpsd

HohoMigrationi: migrating
create_tableCiusers>

=>"0.0168s

HoboMigrationi: migrated (8.8168s)

'r“nhnﬂ?ps\ﬂne,tah]e)
<

Accelerating Data-Rich
 Web Application Development
with the Hobo Framework for Ruby on Rails

Owen Dall

Jeff Lapides

Tom Locke

With Contributions by
Venka Ashtakala
Tola Awofolu
Tiago Franco

Marcelo Giorgi

Matt Jones

Bryan Larsen
Kristian Mandrup

CONTENTS
iCONTENTS

LIST OF FIGURES
iii
AUTHORS
x
CONTRIBUTORS
xi
CHAPTER 1 – WHAT IS HOBO?
1
CHAPTER 2 – INSTALLATION
7
Install Ruby, Rails, Hobo and the SQLite3 Database Engine
7
CHAPTER 3 - BEGINNING TUTORIALS
18
Introductory Comments
19
Tutorial 1 – Directories and Generators
19
Tutorial 2 – Changing Field Names and Displaying Hints
33
Tutorial 3 – Field Validation
38
Tutorial 4 – Introduction to Permissions
45
Tutorial 5 – Hobo Controllers
52
Tutorial 6 – Editing the Navigation Tabs
61
Tutorial 7 – Model Relationships I
64
Tutorial 8 – Model Relationships II
75
CHAPTER 4 – INTERMEDIATE TUTORIALS
86
Introductory Concepts and Comments
87
Tutorial 9 – Editing Auto-Generated Tags
90
Tutorial 10 – DRYML I: A First Look at DRYML
104
Tutorial 11 – DRYML II: Creating Tags from Tags
112
Tutorial 12 – Rapid, DRYML and Record Collections
120
Tutorial 14 – Working with the Show Page Tag
140
Tutorial 15 – New and Edit Pages with The Form Tag
149
Tutorial 16 – The <a> Hyperlink Tag
157
CHAPTER 5 – ADVANCED TUTORIALS
161
Tutorial 17 – The Agile Project Manager
162
Tutorial 18 – Using CKEditor (Rich Text) with Hobo
214
Tutorial 19 – Using FusionCharts with Hobo
218
Tutorial 20 – Adding User Comments to Models
229
Tutorial 21 – Replicating the Look and Feel of a Site
236
Tutorial 22 – Using Hobo Lifecycles for Workflow
261
Tutorial 23 – Creating an Administration Sub-Site
268
Tutorial 24 – Installing and Using GIT
271
Tutorial 25 – Rapid Deployment with Heroku.com
281
CHAPTER 6 – DATABASE TUTORIALS
294
Tutorial 26 – Using MySQL with Hobo
295
Tutorial 27 – Using Oracle with Hobo
302
Tutorial 28 – Using Hobo Index Generation
311
Chapter 7 - Hobo Under the Hood
315
Hobo Fundamentals
315
Hobo Controllers and Routing
359
Hobo Lifecycles
372
Hobo View Hints
389
Hobo Scopes
394
Hobo DRYML Guide
401
Hobo Rapid Tag Library
439
Exploring DRYML with the Advanced Trace Utility
481
INDEX
491

LIST OF FIGURES

Figure 1: Download Site for Ruby
8
Figure 2: Installing Ruby
8
Figure 3: Creating the Ruby Folder
9
Figure 4: Choose Start Menu Folder
10
Figure 5: Ruby Setup Wizard
10
Figure 6: Select which Sqlite3-ruby gem to install
10
Figure 8: Where to download the SQLite DLL
11
Figure 7: Sqlite gem installation completion
11
Figure 10: Site location for the SQLite DLL
11
Figure 11: Updating the version of RubyGems
12
Figure 12: Console output from updating RubyGems
12
Figure 13:Console output from installing Rails
13
Figure 14: Console output from installing Mongrel
14
Figure 15: Console output from installing Hobo
14
Figure 16: Summary of Installed gems
15
Figure 17: Condole output from the "gem env" command
16
Figure 18: Console output from the "gem env" command
16
Figure 19: Hobo application folder structure
21
Figure 20: Location of the migration file
22
Figure 21: Home page for "My First App"
23
Figure 22: Drop down selector for the active user
24
Figure 23: Location of the Rapid templates
25
Figure 24: Folder location for Models and Views
26
Figure 25: Migration file changes
27
Figure 26: Contacts tab on "My First App"
28
Figure 27: New Contact page for "My First App"
29
Figure 28: Remove field from contact model
30
Figure 29: Creating a Hobo “ViewHints” definition for the Contact model
34
Figure 30: View of field relabeled using the Hobo viewhints “field_names” method
34
Figure 31: Adding help text using the Hobo viewhints "field_help" method
35
Figure 32: Contact entry page with ViewHints enabled
36
Figure 33: Examining the “rapid-ui.css” file
37
Figure 34: Page view of validating presence of name
38
Figure 35: Page view of double validation error
39
Figure 37: Page view of triggering the "validates_numericality_of" error
40
Figure 36: Adding “validates_numericality_of” validation
40
Figure 38: Page view of triggering the “validates_numericality_of” error
40
Figure 39: Page view of uniqueness validation error
41
Figure 40: Page view of triggering a range validation error
42
Figure 41: Page view of validation of text length error
42
Figure 42: Page view of “validates_acceptance_of” error
43
Figure 43: Welcome to One Table in the Permissions tutorial
46
Figure 44: Recipes tab
47
Figure 45: Page view of created recipes
48
Figure 46: Table of Hobo permission methods
49
Figure 47: Table of Hobo "acting_user" options
49
Figure 48: Page view of a Recipe
51
Figure 49: Making the Recipes tab disappear
54
Figure 50: Error message “The page you were looking for could not be found”
55
Figure 51: Setting the Hobo "name" attribute for a model
56
Figure 52: Creating you own custom "name" attribute
56
Figure 53: Viewing the edit URL
57
Figure 54: "Unknown action" error page
58
Figure 55: Hobo Controller action summary
60
Figure 56: Customizing the name of a tab
62
Figure 57: Removing the default Home tab
63
Figure 58: Renaming a copy of your application
64
Figure 59: Using "enum_string" to create a drop-down list of Countries
66
Figure 60: Index page for Countries
71
Figure 61: Selecting a Country for a Recipe
71
Figure 62: Active link on Country name in the Recipe show page
72
Figure 63: The Country show page accessed from the Recipe show page
73
Figure 64: Editing Hobo Permissions to remove the Country Edit link
74
Figure 65: The Categories tab on the Four Table app
78
Figure 66: The Index page for Categories
79
Figure 67: "Category Assignments" on the Recipe show page
79
Figure 68: Assignment multiple Categories to a Recipe
80
Figure 69: Edit page view of a Recipe with multiple Categories assigned
81
Figure 70: Show page view of Categories assigned to a recipe
82
Figure 71: Using Hobo ViewHints to enhance the view of related records
83
Figure 72: Show page for a Category before using ViewHints
83
Figure 73: Category page view after adding ViewHints "children :recipes" declaratio
84
Figure 74: Folder view of \taglibs\auto\rapid
88
Figure 76: Folder view of the rapid DRYML files
91
Figure 75: Front page view of the Four Table application
91
Figure 77: Content of the "pages.dryml" file
93
Figure 78: Hobo Page Action Tag definitions
94
Figure 79: The Hobo Rapid <index-page> tag definition in the pages.dryml file
94
Figure 80: The Recipes Index page
95
Figure 81 : View of the taglibs/auto/rapid folder
95
Figure 82: Adding the definition of index-page into the application.dryml file
96
Figure 83: Modifying the “heading” parameter the index-page definition
97
Figure 84: Page view of "My Recipes" after modifying the <index-page> tag
98
Figure 85: Adding the <index-page/> tag to index.dryml
99
Figure 86: Page view of My Recipes to show how a change to the <index-page> tag affects a collection
100
Figure 87: Changing the tab order for the main navigation menus
102
Figure 88: Changing the application name with the app-name tag
102
Figure 89: The \views\front\index.dryml file after the first modification
105
Figure 90: The Home page with the first set of custom messages
105
Figure 91: Passing a parameter to the tag <messages> you created
107
Figure 92: How the passed parameter displays on the page
107
Figure 93: Passing three parameters to your <messsages> tag
108
Figure 94: Page display using your custom <bd-it> tag
109
Figure 95: Calling <span:> explicitly within to your <bd-it> tag
110
Figure 96: Adding the custom <more-messages> tag
113
Figure 97: Page rendering with <more-messages>
113
Figure 98: Extending the tag <messagex> in application.dryml
115
Figure 99: Using the extended <messagex> tag
115
Figure 100: Page view of the next additions to <messagex>
116
Figure 101: Page view of the <more-messages> tag usage
117
Figure 102: Page view of overriding the default message 0.
118
Figure 103: More parameter magic
119
Figure 104: The Four Tables application as we left it
121
Figure 105: Creating the /views/recipes/index.dryml file
121
Figure 106: page view of using a blank "<collection:></collection:>" tag
124
Figure 107: How the <collection> tag iterates
124
Figure 108: Using the <a> hyperlink tag within a collection
125
Figure 109: Specifying what <collection> tag will display
127
Figure 110: Changing the display style within <collection>
128
Figure 111: Changing the implicit context within <collection>
129
Figure 112: Creating comma-delimited multi-valued lists in a <collection>
130
Figure 113: Adding the count of values in the <card> tag
131
Figure 114: Using "if---else" within a tag to display a custom message
132
Figure 115: Using <table-plus> to display a columnar list
135
Figure 116: Adding a "Categories Count" to <table-plus
136
Figure 117: Adding a comma-delimited list within a <table-plus> column
137
Figure 118: adding a search facility to <table-plus> using Hobo’s apply_scopes method
138
Figure 119: Found Recipes searching for "French"
139
Figure 120: The Recipe show page before modification
141
Figure 121: Recipe show page after removing three critical lines of code
142
Figure 122: Using the <field=list> tag to choose which fields to display
142
Figure 123: Using the <collection-heading:> tag
143
Figure 124: Using the <body-label:> parameter tag
144
Figure 125: Using the <country-label:> parameter to change the label on the page
146
Figure 126: A new show page for Recipes
147
Figure 127: Page view of using the replace attribute in the <content-body:> parameter tag
148
Figure 128: Default Hobo form rendering
151
Figure 129: Modifying the <field-list> tag to remove fields on a page
152
Figure 130: First step using the <input> tag
154
Figure 131: Adding the label for the filed "Title"
155
Figure 132: Adding the rest of the input fields
156
Figure 133: Generating an active link to a list of Countries
158
Figure 134: The Countries index page activated by your custom link
158
Figure 135: Constructing a custom link to the "New Country" page
159
Figure 136: Page view of custom <show-page> tag
160
Figure 138: Adding "belongs_to :project" and "has_many :tasks" to the Requirement model
165
Figure 137: Adding "has_many :requirements" to the Project class
165
Figure 139: Adding the “belongs_to” and “has_many” declarations to the Task model
166
Figure 140: Adding the two "belongs_to" definitions to the TaskAssignment model
166
Figure 141: Adding the "has_many" declarations to the USer model
167
Figure 142: First Hobo migration for Projects
167
Figure 143: View of indexes created by the migration
168
Figure 144: The default Home page for the Projects application
169
Figure 145: The Projects index page
170
Figure 146: New Requirement page
170
Figure 147: Index view for Requirements
171
Figure 148: New Task page
171
Figure 149: Index view for Tasks
172
Figure 150: Part 1 of the Hobo Application Summary Page
174
Figure 151: Part 2 of the Hobo Application Summary Page
175
Figure 152: Effect of removing the "index" action from the Tasks controller
177
Figure 153: View of "No Requirements to display" message
177
Figure 154: The "New Requirement" link now appears
178
Figure 155: View of the "New Requirement" page
178
Figure 156: View of the in-line "Add a Task" form
179
Figure 157: Requirement page after modifying controller definitions
181
Figure 158: Defining available roles using “enum_string”
182
Figure 159: Modifying the "create_permitted" method to the User model
183
Figure 160: Users Controller with "auto_actions :all:
183
Figure 161: The Users tab is now active
183
Figure 162: The Edit User page with the new Role field
184
Figure 163: Adding the use of Role in Permissions
185
Figure 164: Modifying the “update_permitted?” method in the Requirement model
187
Figure 165: Assigning multiple Users to a Task in the Edit Task page
188
Figure 166: Contents of the \apps\viewhints folder
189
Figure 167: The default blank “project_hints.rb” file for the “ProjectHints” class
189
Figure 168: Defining “field_names” and “field_help” in ProjecHints
190
Figure 169: The New Project page using “ProjectHints”
190
Figure 170: The default application name and welcome message
191
Figure 171: Changing the application name in "application.dryml"
192
Figure 172: Modifying "\front\index.dryml"
192
Figure 173: Home page modified by changing "/front/index.dryml"
193
Figure 174: Newly modfied home page
193
Figure 175: Extending the card tag for Task in "application.dryml"
195
Figure 176: Viewing assigned users on a the Task card
195
Figure 177: Listing the contents for the "\views\taglibs\auto\rapid" folder
197
Figure 178: contents of the pages.dryml file
198
Figure 179: The auto-generated "show-page" tag for User in "pages.dryml”
199
Figure 180: View of the enhanced User "show-page"
200
Figure 181: The Users tab showing all assignments
201
Figure 182: Using the Hobo “<table-plus>” feature to enhance the Requirements listing
203
Figure 184: Using a search within the Requirements listing
204
Figure 183: Enhancing the <table-plus> listing
204
Figure 185: The Edit Requirement form with selectable status codes
206
Figure 186: Creating an AJAX status update for Requirements
207
Figure 187: adding the "validates_timeliness" gem to "environment.rb"
212
Figure 188: Task model with "due_date" and a validation for the date
212
Figure 189: Error message from trying to enter a date earlier than today
213
Figure 190: CKEditor source folder listing
214
Figure 191: Using the ":html" field option to trigger rich-text editing
216
Figure 192: Adding the required CKEditor references in application.dryml
216
Figure 193: Sample Hobo form using CKEditor
217
Figure 194: Registration form to request FusionCharts
219
Figure 195: Download page for FusionCharts
220
Figure 196: Target location for the FusionCharts swf filles
221
Figure 197: Adding the required <extend tag=’page’> definition in application.dryml
221
Figure 198: Screen shot of sample recipe data for the tutorial
222
Figure 199: Content of recipes/index.dryml used to render the FusionChart
225
Figure 200: Screen shot of rendered FusionCharts bar chart
226
Figure 201: recipe/index.rml to render a FusionCharts pie chart and bar chart
227
Figure 202: Screen shot of the rendered FusionCharts bar and pie charts
228
Figure 203: Editing the application name for the Comments Recipe
229
Figure 204: Home page for the Comments Recipe
230
Figure 205: Adding Body and Game to Comments
230
Figure 206: Permissions for the Comment model
231
Figure 207: The auto_actions for the comments_controller
231
Figure 208: Adding comments to the Game model
232
Figure 209: Posting comments about a game
232
Figure 210: Comments' Recipe with support for courts
233
Figure 211: Adding courts to comments
233
Figure 213: Modifying auto_actions for the comments_controlller (allow court)
234
Figure 212: Adding comments to courts
234
Figure 214: Hiding court and game in the comment's form
235
Figure 215: View of the in-line "Add a Comment" form
235
Figure 216: Posting comments about a court
235
Figure 217: Screen shot of the nifa.usda.gov home page
236
Figure 219: The NIFA photo image
237
Figure 218: The NIFA banner image
237
Figure 220: The NIFA main navigation bar
238
Figure 221: NIFA navigation panels
238
Figure 222: NIFA footer navigation
238
Figure 223: The NIFA Demo default home page
240
Figure 224: Using the "app-name" tag to change the default application name
240
Figure 225: Using Firebug to locate the background color
241
Figure 226: Using Firebug to find the images used by Hobo for the default background
241
Figure 227: Adding the new background color to "application.css"
242
Figure 228: First pass at modifying "application.dryml"
243
Figure 229: The two images used in NIFA's top banner
243
Figure 230: How to reference the banner gif in "application.css"
244
Figure 231: View of the NIFA Demo login page
245
Figure 232: View of our first pass at the main navigation menu
246
Figure 233: Still need more to fix the top navigation menu...
247
Figure 234: The fixed NIFA man navigation bar
248
Figure 235: View of the default three-column formatting
249
Figure 236: View of the left panel contact without styling
251
Figure 237: View of the left panel content with correct styling
252
Figure 238: View of the right panel content with ßstyling
254
Figure 239: View of the main content panel
255
Figure 240: NIFA Demo with final footer styling
256
Figure 241: Batch file with commands to create the plugin folders and content
257
Figure 242: Guest view Recipes - All recipes are in state "Not Published"
264
Figure 243: Recipes ready to Publish.
264
Figure 244: Omelet recipe after being placed in the "Published" state
265
Figure 245: Recipe index with buttons for "Publish" and "Not Publish"
265
Figure 246: Guest user can only see the published Recipe
266
Figure 247: Generator console output for creating an admin sub-site
268
Figure 248: View of the Admin folder contents
269
Figure 249: View of the Admin Sub-Site
270
Figure 250: Hobo source code on github.com
271
Figure 251: Hobo gems are also available on github.com
272
Figure 252: Installing Git for Mac OSX
273
Figure 253: Download the mysysgit installer for Windows
273
Figure 254: Running the Git Setup Wizard
274
Figure 255: Git setup options
274
Figure 256: Select the OpenSSH option
275
Figure 257: Select to option to run Git from the Windows commnd prompt
275
Figure 258: Select Windows style line endings
276
Figure 259: Running the PuTY Key Generator install
277
Figure 260: Generate SSH key pairs for use with Git
277
Figure 261: The default file names generated by PuTTYGen
278
Figure 262: Locating your USERPROFILE setting
279
Figure 263: View of "no ssh public key found" error
279
Figure 264: Naming your SSH key pairs
280
Figure 265: The original Heroku beta invitation
281
Figure 266: Using the free "Blossom" database hosting option on Heroku.com
282
Figure 267: Sign Up for a Heroku account
283
Figure 268: Heroku notification that "Confirmation email sent"
284
Figure 269: Locating your "Invitation to Heroku" email
284
Figure 270: The "Welcome to Heroku" signup page
285
Figure 271: The "Account Created" message at Heroku.com
285
Figure 272: Installing the Heroku Ruby gem
286
Figure 273: Console output from the "heroku create" command
287
Figure 274: Using heroku git push
288
Figure 275: Telling Heroku where to find your application's gems
288
Figure 276: Adding your “.gems” config file to your git repository
289
Figure 277: Migrating your database schema to Heroku.com
290
Figure 278: Testing your Heroku app
290
Figure 279: Running the "Four Table" app on Heroku.com
291
Figure 280: Installing the Taps gem to upload data to Heroku.com
291
Figure 281: Using "heroku db:push" to push data to your app on Heroku.com
292
Figure 282: The "Four Table" app on Heroku.com with data
292
Figure 283: Add a recipe on Heroku.com
293
Figure 284: Pull changed data from Heroku.com to your local app
293
Figure 285: Download site for MySQL
295
Figure 287: Choose the installation type
296
Figure 286: Using the .msi file to install MySQL on Windows
296
Figure 288: MySQL Server Setup Wizard
297
Figure 289: Configure MySQL Server
297
Figure 290: Choose Standard Configuration
298
Figure 291: Install as Windows Service
298
Figure 292: Launch MySQL from the command prompt
299
Figure 293: Create the database from the command line
299
Figure 294: Console output from the Hobo command
300
Figure 295: Console output from the Hobo migration
301
Figure 296: Review the table created in MySQL
301
Figure 297: Console output after installing Oracle gems for Ruby and Rails
302
Figure 298: Installing the Oracle ruby gems
302
Figure 299: The generated database.yml file for Oracle
303
Figure 300: Oracle database install download site
304
Figure 301: Running the Oracle XE installation
305
Figure 302: Specifying the database passwords
305
Figure 303: Launch the Database home page
306
Figure 304: Log is as SYS to configure your database
306
Figure 305: Creating a schema/user to use with Hobo
307
Figure 306: The tnsnames.ora file created during installation
307
Figure 307: Generate a Migration after connecting to Oracle
308
Figure 308: Log into Oracle to view the created table
308
Figure 309: Access the Oracle Object Browser
309
Figure 310: Review the User table from within Oracle
309
Figure 311: Review the Indexes view for Users
310
Figure 312: Review the Constraints view for User
310
Figure 313: Data flow for a typical Application using a MVC framework
317
Figure 314: Data flow for a Rails application
318
Figure 315: Data flow for a Hobo application
319
Figure 316: First level look at Hobo source
319
Figure 317: Listing of Ruby programs within the Hobosupport folder
320
Figure 318: Content overview for the Hobofields gem
321
Figure 319: Command line options for Hobo Migrations
322
Figure 320: Required Hobosupport and Hobofields gems listed in hobo.rb
323
Figure 321: Optional parameters for the Hobo command
323
Figure 322: The HoboGenerator class actions
327
Figure 323: The line “config.gem ‘hobo’ is added in environment.rb by Hobo
328
Figure 324: The lines added to the file “rake” by Hobo
328
Figure 325: Users Controller generated by Hobo
331
Figure 326: User model with Lifecycles generated by Hobo
332
Figure 327: Action Mailer Model generated by Hobo
332
Figure 328: User model generated for an "--invite-only" Hobo application
335
Figure 329: Users Controller generated with an "--invite-only" Hobo application
335
Figure 330: Action Mailer model generated with an "--invite-only" Hobo application
336
Figure 331: Source code for "hobo_front_controller_generator.rb"
338
Figure 332: Hobo Rapid action related tags
342
Figure 333: Hobo precedence logic for action tags
344
Figure 334: Defining the Friendship model
374
Figure 335: Configuring DRYML for tracing
483
Figure 336: HTML DRYML tracing
484
Figure 337: Sample output from a ".dryml.log" file
484

AUTHORS

Owen Dall {TBD}
Owen has been Chief Systems Architect for Barquin International for the past seven years, where he has led data warehousing, business intelligence, and operational system development for federal clients, for whom he has become XE "is" an evangelist for agile XE "agile" development methodolgies after being discovering the power of Ruby Metaprogramming via Hobo in 2006 by Tom Locke. XE "to"
During his 25+ years of mission-critical software development experience, he has authored several shrink-wrapped software packages used by such diverse clients as the Office of the Vice President, Airbus, Principal Healthcare, Pulte Homes, Robert Wood Johnson Foundation, and the Justice Research and Statistics Association. Owen’s first PC software package, Interactive Models for Projecting Arrests and Corrections Trends (IMPACT), was published in 1981 and was used in over 40 states.

Jeffrey Lapides {TBD}
Jeffrey has a PhD in Physics and a long history for managing software projects in the private sector, first as Vice President at Allegany Beverages. He brings a rigorous, fresh, and demanding perspective to XE "to" agile XE "agile" development. Jeffrey is XE "is" currently a senior business development manager for the University of Maryland.

Tom Locke {TBD}
Tom is XE "is" the father of the Hobo XE "Hobo" project and a freelance web-developer and technical trainer, specializing in Ruby on Rails. He has been working exclusively on custom Rails application development for the last three years and has built many sites both small and large. Having a fanatical aversion to XE "to" repeating himself, he has extracted the Hobo framework from these projects.

CONTRIBUTORS

Venka Ashtakala

Venka is XE "is" a Software Engineering Consultant with over 10 years experience in the Information Technology industry. His expertise lies in the fields of rapid development of data driven web solutions, search XE "search" , reporting and data warehousing solutions for both structured and non structured data and implementing the latest in open source technologies. He has consulted on a variety of projects in both the Private and Public sectors, most recently with the National Institute of Food and Agriculture and Tandberg LTD.

Tola Awofolu

Tola is XE "is" a software engineer with over seven years of experience with standalone Java and Java web development frameworks. She’s been working with Ruby on Rails and Hobo XE "Hobo" for over a year as part of the Barquin International team at USDA on two major projects. She is a protégé of Tom Locke and Bryan Larsen and has become Barquin International’s leading Ruby developer.

Marcelo Giorgi

Marcelo is XE "is" a software engineer with over seven years of experience with standalone Java and Java web development frameworks. He’s been working with Ruby on Rails for more than two years, and had the opportunity to XE "to" work with (and make some contributions to) Hobo during last year.

Tiago Franco

Tiago Franco is XE "is" a Project and Technical Manager working in Software development for more than ten years. He's been working with Ruby on Rails since 2006, and adopted Hobo XE "Hobo" in 2008 to XE "to" re-design Cavortify.com
Matt Jones

Matt is XE "is" a software engineer who can remember when Real Web Programmers wrote NPH CGI scripts to XE "to" be loaded up in Mosaic. When he’s not building Hobo applications, he’s often found hunting Rails bugs or helping new users on rails-talk and hobo-users. He also has the dubious honor of being the unofficial maintainer of the Rails 2.x-era “config.gem” mechanism, earned after fixing the borked 2.1 series version to work better with Hobo.

Bryan Larsen

Bryan sold his first video game in 1987 and has never stopped. Joining the ranks of fathers this year has slowed him down, but he's still having fun. He lives in Ottawa with his wife and daughter. Bryan is XE "is" a key contributor to XE "to" Hobo and has nursed it along to a mature 1.0 version.
Kristian Mandrup

Kristian Mandrup is XE "is" a senior consultant from Copenhagen, Denmark. He currently works as a senior consultant at a major Swedish IT consulting firm. He is a jack of all trades when it comes to XE "to" IT technologies for developing apps, and has found a "sweet spot" using Ruby on Rails, Hobo, jQuery and ExtJS. He is always on the move looking to increase productivity and the joy of developing software! He is devoted to open source, sharing numerous projects on github and also contributes to Hobo.
CHAPTER 1 – WHAT IS HOBO?

Overview

By Tom Locke

Hobo is XE "is" a software framework that builds on the amazingly successful Ruby on Rails to XE "to" radically reduce the effort required to develop database-driven, interactive web sites and web-based applications. The original motivation for the Hobo project can be summed up pretty succinctly with a single sentiment: "Do I really have to code all this stuff up again?".

In other words Hobo is XE "is" about not re-inventing the wheel. In software-engineer-speak, we call that code reuse. If you mention that term in a room full of experienced programmers you'll probably find yourself the recipient of various frowns and sighs; you might even get laughed at. It all sounds so simple - if you've done it before just go dig out that code and use it again. The trouble is, the thing you want to XE "to" do this time is just a bit different, here and there, from what you did last time. That innocuous sounding "just a bit different" turns out to be twelve-headed beast that eats up 150% of your budget and stomps all over your deadline. Re-use, it turns out, is a very tough problem. Real programmers know this. Real programmers code it up from scratch.

Except they don't. Ask any programmer to XE "to" list the existing software technologies they drew upon to create their Amazing New Thing and you had better have a lot of time to spare. Modern programming languages ship with huge class libraries, we rely on databases that have unthinkable amounts of engineering time invested in them, our web browsers have been growing more and more sophisticated for years, and we can now draw upon very sophisticated online services, such as web based mapping and geo-location, to add features to our products that would otherwise have been far beyond our reach.

So if we just change our perspective slightly, and look at the infrastructure our application is XE "is" built on, rather than the application code itself, it turns out the quest for re-use has been a great success after all. This is probably because our attitude to XE "to" infrastructure is different--you like it or lump it. If your mapping service doesn't provide a certain feature, you just do without. You can't dream of coding up your own mapping service, and some maps is better than no maps. We've traded flexibility XE "flexibility" for reach, and boy is it a good trade.

Programmers get to XE "to" stand on the shoulders of giants. Small teams with relatively tiny budgets can now successfully take on projects that would have been unthinkable a decade ago. How far can this trend continue? Can team sizes be reduce to one? Can timelines be measured in days or weeks instead of months and years? The answer if yes, if you are willing to trade flexibility XE "flexibility" for reach.

In part, this is XE "is" what Hobo is about. If you're prepared for your app to XE "to" sit firmly in the middle of Hobo's "standard database app" box, you can be up and running with startlingly little effort. So little in fact that you can just about squeeze by without even knowing how to program. But that's only one part of Hobo. The other part comes from the fact that nobody likes to be boxed in. What if I am a programmer, or I have access to programmers? What if I don't mind spending more time on this project?

We would like this "flexibility XE "flexibility" for reach" tradeoff to XE "to" be a bit more fluid. Can I "buy back" some flexibility by adding more programming skills and more time? In the past this has been a huge problem. Lots of products have made it incredibly easy to create a simple database app, but adding flexibility has been an all-or-nothing proposition. You basically stuck with the out-of-the-box application, or you jumped off the cliff and ended up doing something awfully like coding the app from scratch.

This is XE "is" where, we believe, Hobo is a real step forward. Hobo is all about choosing the balance between flexibility XE "flexibility" and reach that works for your particular project. You can start with the out-of-the box solution and have something up and running in your first afternoon. You can then identify the things you'd like to XE "to" tweak and decide if you want to invest programming effort in them. You can do this, bit by bit, on any aspect of your application, from tiny touches to the user-interface all the way up to full-blown custom features.

In the long run, and we're very much still on the journey, we hope you will never again have to XE "to" say "Do I really have to code all this up again?", because you'll only ever be coding the things that are unique to your situation. To be honest that's probably a bit of a utopian dream, and some readers will probably be scoffing at this point - you've heard it all before. But if we can make some progress, any progress in that direction, that's got to be good, right? Well we think we've made a ton of progress already, and there's plenty more to come!

Background

A brief look at the history leading up to XE "to" Hobo might be helpful to put things in context XE "context" . We'll start back in ancient times -- 2004. At that time the web development scene was hugely dominated by Java with its "enterprise" frameworks like EJB, Struts and Hibernate. It would be easy, at this point, to launch into a lengthy rant about over-engineered technology, designed by committee and painful to program with. But that has all been done before. Suffice it to say that many programmers felt that they were spending way to much time writing repetitive "boilerplate" code and the dreaded XML XE "XML" configuration files, instead of focusing on the really creative stuff that was unique to their project. Not fun and definitely not efficient.

One fellow managed to XE "to" voice his concerns much more loudly than anyone else, by showing a better way. In 2004 David Hienemier Hanson released a different kind of framework for building web apps, using a then little-known language called Ruby. At a conference in ??? he wowed the audience by creating a working database-driven Weblog application from scratch in less than 15 minutes. The video of that event circulated the globe, and before anyone really even knew what it was, the Ruby on Rails framework was famous.

Like most technologies that grow rapidly on a wave of hype, Rails (as it is XE "is" known for short) was widely dismissed as a passing fad. Five years later the record shows otherwise. Rails is now supported by all of the major software companies and powers many household-name websites.

So what was, and is XE "is" , so special about Ruby on Rails? There are a thousand tiny answers to XE "to" that question, but they all pretty much come down to one overarching attitude. Rails is, to quote its creator, opinionated software. The basic idea is very simple: instead of starting with a blank slate and requiring the programmer to specify every little detail, Rails starts with a strong set of conventions, which "just work" 95% of the time. "Convention over Configuration" is the mantra. If you find yourself in the 5% case where these conventions don't fit, you can usually code your way out of trouble with a bit of extra work. For the other 95% Rails just saved you a ton of boring, repetitive work.

In the previous section we talked about trading flexibility XE "flexibility" for reach. Convention over configuration is XE "is" pretty much the same deal: don't require the programmer to XE "to" make every little, choice; make some assumptions and move swiftly on. The thinking behind Hobo is very much inspired by Rails. We're finding out just how far the idea of convention over configuration can be pushed. For my part, the experience of learning Rails was a real eye-opener, but I immediately wanted more.

I found that certain aspects of Rails development were a real joy. The "conventions", that is XE "is" , the stuff that Rails did for you, were so strong that you were literally just saying what you wanted, and Rails would just make it happen. We call this "declarative programming". Instead of spelling out the details of a process that would achieve the desired result, you just declare what you want, and the framework makes it happen -- what not how.

The trouble was that Rails achieved these heights in some areas, but not all. In particular, when it came to XE "to" building the user interface to your application, you found yourself having to spell things out the long way.

It turned out this was very much a conscious decision in the design of Ruby on Rails. David Hienemier Hanson had seen too many projects bitten by what he saw as the "mirage" of high-level components:

{TBD DHH QUOTE}

I must say I find it easy to XE "to" agree with this perspective, and many projects did seem, in hindsight, to have been chasing a mirage. But it's also a hugely dissatisfying position. Surely we don't have to resign ourselves to re-inventing the wheel forever? So while the incredibly talented team behind Rails have been making the foundations stronger, we've been trying to find out how high we can build on top of those foundations. Rather than a problem, we see a question -- why do these ideas work so well in some parts of Rails but not others? What new ideas do we need to be able to take convention over configuration and declarative programming to higher and higher levels? Over the last couple of years we've come up with some pretty interesting answers to those questions.

In fact one answer seems to XE "to" be standing out as the key, and can be seen nicely by comparing Hobo to other seemingly similar projects.

Hobo Compared to XE "to" other stuff

· Scaffold generators

· Active Scaffold

· Streamlined

The Future

At the time of writing we are just mopping up the last few bugs on the list before the release of Hobo version 1.0. Hobo, it seems, is XE "is" finished. In actual fact we're really just getting started.

Bigger library

Performance improvements

Less magic

Even higher level

One of the really interesting things we've learnt through release Hobo as open source, has been that it has a very strong appeal to XE "to" newcomers. It is XE "is" very common for a post to the "hobousers" discussion group to start "I am new to web programming" or "This is my first attempt to create a web app". It seems that, with Hobo, people can see a finished result is within their reach. That is a great motivator.

Now that we've seen that appeal, it's really interesting to XE "to" find out how far we can push it. We've already seen Hobo applications created by people that don't really know computer programming at all. Right now these people are really rather limited, but perhaps they can go further.

Hobo has ended up serving two very different audiences: experienced programmers looking for higher productivity, and beginners looking to XE "to" achieve things they otherwise couldn't. Trying to serve both audiences might sound like a mistake, but in fact it captures what Hobo is XE "is" all about. The Our challenge is to allow the programmer to chose there own position on a continuum from "incredibly easy" to "perfectly customized".

A Challenge

How fast could you build an application with the following set of requirements using your current development tool, and have it running, without touching the database engine?

1. The application called “things” maintains a list of things, with a name XE "name" , description, and category.

2. Users access the application with a browser front end.

3. There is XE "is" an application signup and login capability that allows any number of people to XE "to" create his/her own login name XE "name" and password. The system administrator is determined by a simple rule--the first to log in to the application becomes the administrator. The signup and login capability is accessible from the home page.

4. There will be a text search XE "search" facility that will allow users to XE "to" find one of the many things entered.

OK. You can be up and running with this app using Hobo XE "Hobo" in under two minutes. Got your attention? Let’s up the ante just a bit:

1. The application called “Projects” maintains a set of projects and related tasks for a team of people. Members of the team can be assigned to XE "to" these tasks.

2. Users access the application with a browser. The browser provides the capability to XE "to" create, edit, delete and list projects, tasks, and task assignments.

3. All data entry fields have rollover hints to XE "to" aid user data entry. Validation rules are attached to the fields to prevent invalid entries.

4. Each project can have any number of associated tasks, and each task can have one or more team members assigned to XE "to" it.

5. Each task has one status at any given time. The list of status codes can only be maintained by the system administrator. A drop-down XE "drop-down" list of status codes will be displayed on a task creation page. Only one of these status codes can be selected and saved for this task.

6. There is XE "is" a signup and login capability permitting each team member to XE "to" create his/her own login name XE "name" and password. The system administrator is determined by a simple rule--the first to log in to the application becomes the system administrator. The system administrator is the only person who can create, edit, or delete a project.

7. Any team member can add a task to XE "to" a project, assign a team member to a task, or change the status of a task. Only the system administrator can delete a task or task assignment.

8. The task assignment page will have a drop-down XE "drop-down" list of all existing team members. Only members of this list can have tasks assigned to XE "to" them.

9. A project page will display a list of all tasks assigned to XE "to" the project.

10. A task page will display a list of team members assigned to XE "to" the task.

11. A text search XE "search" facility will search entries in the various database tables for partial or full word matches.

You will learn how to XE "to" build all of this functionality after completing the tutorials in this book.

You will also learn how to XE "to" dig under the hood to use Hobo XE "Hobo" ’s other tools to make things fancier and to tailor the user interface to meet the standards of any organization—including yours.

In summary:

· Hobo XE "Hobo" automatically provides many of the features that most applications need, like a user login and permission system, declarative business rules, site searching, etc.
· You declare your data and your permissions structures. Then Hobo XE "Hobo" uses this information to XE "to" “intelligently” build the user interface (UI XE "UI") you need, including creating, edit, delete and list table records.
· Hobo XE "Hobo" does not limit XE "limit" your ability to XE "to" customize your UI XE "UI" when its basic assumptions don’t fit your situation. It comes with a set of reusable components, called tags, which let you declare the atomic structure of the UI in as much detail as you will ever need.
· Hobo XE "Hobo" was built with the assumption that no matter how many libraries you provide, some programmers will need to XE "to" solve unanticipated problems. So Hobo provides a development language that allows you to create new components (tags). You never have to start over because customization is XE "is" incremental. Hobo lets you define your own tags so you can then declare exactly what you want.
CHAPTER 2 – INSTALLATION

Install Ruby, Rails, Hobo XE "Hobo" and the SQLite3 Database Engine

The following instructions are tailored for the most commonly used operating system in the enterprise: Windows. We also include XE "include" instructions for installing the self-configuring database engine, SQLite3, which is XE "is" the default engine used by Hobo XE "Hobo" and Rails when in development mode. This allows you to XE "to" focus on learning Hobo, not configuring a database. We provide instructions for configuring Oracle XE "Oracle" and MySQL XE "MySQL" in the “Recipes” section of the book.

Most books and online tutorials on Ruby and Rails are tailored to XE "to" Mac users, and pay lip service to Windows, as the MacBook Pro is XE "is" the weapon of choice in the Rails community. Nevertheless, although the authors of this book own and prefer Mac technology, most of us are required to use Windows PCs as workstations in most current client situations.

This book assumes that many of you are trying out Hobo XE "Hobo" , Ruby, and Rails for the first time and that a large percentage will also be using either Windows XP or Windows Vista on a day-to-day basis. We don’t want that minor factor to XE "to" limit XE "limit" your development enjoyment. Mac and Linux users may also easily read this book, as Hobo is XE "is" easy to install in these environments.

So--get your favorite web browser fired up, have a good cup of coffee handy, and follow the instructions below.

If you already have Ruby and Rails installed, you can skip XE "skip" this section and instead go straight to XE "to" resources at:

http://hobocentral.net/two-minutes/
If you have a Mac with OS X, Ruby 1.8.6 and Rails 1.2.3 are pre-installed. You can skip XE "skip" step 1 and go straight to XE "to" step2.

The following is XE "is" a good blog resource for alternative installation for Mac users:

http://hivelogic.com/articles/2008/02/ruby-rails-leopard
For Linux aficionados:

http://linuxtips.today.com/2009/01/04/installing-ruby-on-rails-on-linux/
1. Download the latest final release Ruby version as a Windows installer executable file (ruby186-26.exe as of January, 2009) from rubyforge.org:

http://rubyforge.org/frs/?group_id=167

[image: image2]
[image: image1.png]Rapid Rails with Hobo

Double click on the file ruby186-26.exe to XE "to" run the installer. Select the “Scite” (a good freeware program editor) and the “Enable RubyGems XE "RubyGems" ” options XE "options" :

[image: image3.png]© Ruby-18

Choose Components
Choose which features of Ruby-186-26 you want to ntal,

6 Setup

Check the companents you wart ta install and ncheck the companents you don't wank ta
instal,Clck Next to continue.

Description
Select companents to install ul
P Ruby Postion your mause.
STE over a component to
Enable RubyGems see s descripton,

[Ewropean Keyboard

Space required: 89,98

Hiuloft Tnstall Systern 12,35

You can install ruby on any drive or folder, but for the purposes of the tutorials we will be using the default c:\ruby folder.

[image: image4.png]® Ruby-186-26 Setup

Choose the Folder in which to install Ruby-186-26. 3

Choss sl Loaton ;
(%)

Setup wil nstall Ruby-186-26 n the following foder. To install i a diferent folder, cick
Brawse and select another Folder. Cck Next ta cantinue.

Destination Folder

Space required: 89,918
Space avaable: 12.6G8

Choose the default menu location:

[image: image5.png]Select the Start Men foder in which you would ke o create the program's shortcuts, You
can asa enter a name to create a new folder

Accessaries
Adrinistrative Tools
adobe

sixure
Beyond Compare 2
Business Objects

CA Registration
Ciix

Computer Assoriates
Cybertink PowerDD.
Del Accessories
Games

The installer will create a larger number of folders under the Ruby folder.

When the installation is XE "is" complete you will see a popup window like the following:

[image: image343.png][image: image6.png]Completing the Ruby-186-26 Setup
wizard

Ruby-186-26 has been installed on your computer.

Clck Finsh to close this wizard.

[show Readme

Back Fiish Concel

2. Install the SQLite3-ruby gem XE "SQLite3-ruby gem" .

Open up the Windows command prompt (Start>Programs>Accessories>Command Prompt) and run the following from the c:\ruby folder.

C:\ruby> gem install sqlite3-ruby -v 1.2.3
[image: image7.png]\WINDOWS\system32\CMD.exe - gem install sqlite3-ruby -v 1

:\Ruby>gen install sqlited-ruby —v 1.2.3
Bulk updating Gem source index for: hitp://gems.rubyforge.org
elect which gem to_install for your platform (i386-mswin32)

1 e3-ruby 1.2.3 Cruby)
2. e3-ruby 1.213 (xB6-ningu32)
31 salite3-ruby 11213 (mswin32>

3l Skip ¢

5. Cancel installation

If a prompt such as the following appears, select option 3. At completion you will see the following:

[image: image8]
[image: image344.png]

MS Windows PCs also require the sqlite3.dll XE "sqlite3.dll" . Download this from http://www.sqlite.org/download.html place it the c:\ruby\bin folder.

Unzip the downloaded file and place the sqlite3.dll XE "sqlite3.dll" and sqlite.def files in the c:\ruby\bin folder.

[image: image9.png]fle Edt Vew Hgory fookmatks ook el !

- C Zar (BB https o salite.orgjdonrload html 7% -]
Google Search - & - M - & - @R T3 Bookmarks + mD - N Autolik +] Autoril - & < - @

Sdllles=5.0.1/= A COMMana-Iine program for acCessing and moaiTying SULITe Version 5." darapases. {

Toweoe

0sx-x86.bingz For x86 Macs running Leopard (05 10.5) only
(252.64 KiB)

salite3 analyzer-3.6.1- An analysis program for database files compatible with SQLite version 3.6.1 and
0sx-x86.bin.gz later. For x86 Macs running Leopard (S 10.5) only.
(317.40 KiB)
Precompiled Binaries For Windows
salite-3 6 17.zp A command-line program for accessing and modifying SQLite databases. See the
(246.53KiB) documentation for additional information &
telsqlite-3 6 17.2ip Bindings for Tcl/Tk. You can import this shared library into either tclsh or wish to get
(315.02KiB) SQLite database access from Tcl/Tk. See the documentation for details, L4

This is a DLL of the SQLite library without the TCL bindings. The only external
dependency is MSVCRT.DLL.

salite3 analyzer- An analysis program for database files compatible with SQLite version 3.6.1 and }

3.6.1.zip later,

(508.70 KiB)
st o apnstl 5l s, ittt A AN GPTN .

Figure 8: Where to XE "to" download the SQLite DLL
[image: image345.png]© Search Help

Browse by Audience

» Economics & Community
Development

» Education

» Environment &
Natural Resources

» Family, Youth &
‘Communities.

» Food, Nutrition & Health
» International

 Pest Management

» Plants

+ Technology & Engineering

3. Update XE "Update" the application package installer. The application package installer for RubyGems XE "RubyGems" has been significantly enhanced since the 1.8.6 release of the Ruby Windows one-click installer package. To update XE "update" the latest version run this command:

C:\ruby> gem update XE "update" --system XE "gem update --system"

[image: image10.png]C:WINDOWS\system32\CMD. exe - gem update —system o x!

:\Ruby>gen update —-system
pdating RubyGens
Attenpting remote update of rubygems-update,
Tnstall required dependency builder? [¥n1 ¥

Install required dependency session? [¥nl ¢

Install required dependency hoe—seattlerb? [¥n1 ¥

Install required dependency hoe? [¥n1 %

Install required dependency rubyforge? [¥nl ¥

Install required dependency rake? [¥nl ¥

Install required dependency minitesc? [¥nl ¥ AJ—J

Tnstall required dependency hoe? [¥nl ¥

Answer ‘Y’ to XE "to" all of the” Install required dependency…” prompts…

A series of status messages will scroll by similar to XE "to" the following:

[image: image11.png]C:\WINDOWS\system32\CMD. exe -Io

Successfully installed minitest—1.4.2
Successfully installed hoe=2.3.3

Installing »i docunentation for rubygems—update-1.3.5
Installing ri docunentation for builder-2

While generating documentation for builde:
... MESSAGE: Unhandled special: Special: type=17. text
2> RDOC args: —ri ——op ci/Ruby/lib/ruby/gens/1.8/doc/builder- Easy RML
Biilding —main README quiet 1ih CHANGES Rakefile README doc/releases/builder-1.2.4
.rdoc_doc/releases/builder-2.0.0.rdoc doc/releases/builder-2.1.1.rdoc

Ccontinuing with the rest of the installation)

Tnstalling »i documentation £or hoe-seattlerb 1.2.1...

Installing »i docunentation for hoe—2.3.3

Installing »i documentation for rubyforge—i.0.4
Installing »i docunentation £or rak

Installing »i docunentation for minitest=1.3.2.
Installing ri docunentation For hoe—2.3.3
Installing RDoc documentation for rubygems—update—1.3.5...
Could not £ind main page README

Could not £ind main page README

Could not £ind main page README

Could not find main page README

Tnstalling RDoc documentation for builder-2.1.2
Installing RDoc documentation for hoe-seattierb™i.2.1
Installing RDoc documentation for hoe—2.3.3
Installing RDoc documentation for rubyforge—i.0.4...
Installing RDoc docunentation for rake8.
Installing RDoc documentation for minitest=1.42...
Installing RDoc documentation for hoe=2.3.3.
Updating version of RubyGens to 1.3.5
Installing RubyGems 1.3.5

RubyGens 1-3.5 instalied

flin=== 1.3.5 / 2089-87-21
Bug £ixes:

 Fix use of prerelease gems.
b« Gen.bin_path no longer escapes path with spaces. Bug #25935 and #26458.

Deprecation Notices:
b Bulk index update is no longer supported (the code currently remains, but not

the tests)
Gen: nanage_gems was removed in 1.3.3.

Tine::today was removed in 1.3.3.

RubyGens installed the following executables:
©3/Ruby/bin/gen

RubyGens system softuare updated
C2\Ruby>

[image: image346.png]Quick Links

A2 Index
Local Extension Office
Jobs & Opportunities
State & National Partners
NIFA Staff Directory
Programs

Program Impacts

CRIS (funded projects)
Visiting NIFA

Budget Information

4. Add the “github” and “rubyonrails” websites as sources to XE "to" look for Ruby packages:

C:\ruby> gem sources -a http://gems XE "gems" .github.com XE "github.com"
C:\ruby> gem sources -a http://gems XE "gems" .rubyonrails.org
5. Next install the latest version of Rails. (As of this writing it is XE "is" version 2.3.2.)

C:\ruby> gem install rails -v 2.3.2
[image: image347.png]2 RubyForge: One-Click Ruby Installer: Project Fi

Fle Edt View Favortes Took

Help

osoft Internet Explorer

Qs - © M B G O forens @3- 23 B

ackress | €] htpirubyforge orgfrsfraroup_id=167

e e &t B &

T

Package | Reled

One-Click Instal

1.8.6-27 Release Can|
ruby186-27_rc2.e
ruby186-27_rc2.m
1.8.6-27 Release Can|
ruby186-27_rc1.ed
ruby186-27_rc1.m

File Download - Security Warning,

Do you want to run or save this file?

Name: ruby186-26.ex
Type: Applcation, 23.7 M8
Fiom: rubyforge iasirosdu.net

Type

19 18:02

| Other
14 13:52

exe (Windows executable
| Other

1.8.6-26 Final Releas
ruby186-26.exe
ruby186-26.mds

1.8.6-26 Release Canl

9

‘Whil fls fiom the Iteret can be useful thisfle type can

potentialy haim your computer If you do ot st the source, do not

1o orsave his software. what's the rsk?

14 23:13
exe (Windows executable
Other Source File

29 23:15

ruby186-26_rc2.exe
ruby186-26_rc2.mds
1.8.6-26 Release Can
ruby186-26_rc1.exe
ruby186-26_rc1.mds

23.41 M8
34 bytes

23.39 MB
32 bytes

93,4451396 exe (Windows executable
4,200 any Other
2007-10-16 16:01
14,231 1386 exe (Windows executable
1,982 Any Other

exe (Windows executable

@ Internet

[image: image12]
Notice that dependent gems XE "gems" and documentation are automatically installed as well.

6. Install the Mongrel web server:

C:\ruby> gem install mongrel

[image: image13.png]C:\WINDOWS\system32\CMD. exe

:\Rubygen install mongrel
uccessfully installed gem_plugin—0.2.3
uccessfully installed cginultipart cof £ix-2.5.0
uccessfully installed mongrel-1i.1.5-x86=nswin32-68
gens_installed
Installing »i documentation for gem_plugin=0.2.3...
Installing ri documentation for cgimultipart cof
Installing ri documentation for mongrel-i.1.5-x86-mswin3:
Installing RDoc documentation for gem_plus
Installing RDoc documentation for cgimultipart o
Installing RDoc documentation for mongrel-i.1.5-x86-mewin3:

= \Ruby>

LI f

[image: image348.png]C:\WINDOWS\system32\CMD. exe ofx

:\Ruby>gen install sqlited-ruby —v 1.2.3
Bulk updating Gem source index for: http://gems.rubyforge.ory
elect which gem to_install for your platform (i386-mswin32)
1. sqlited-ruby 1.2.3 Cruby
I sqlite3-ruby 1:213 (xB6-mingu32>
I salite3-ruby 11213 (nswin32>
I Skip this gen
5. Cancel installation
>3
uccessfully installed sqlited-—ruby—1.2.3-nswin32
Installing ri documentation for sqlite3 ruby—1.2.3-mswin32...
Installing RDoc documentation for sqlite3-ruby™i.2.3-mswind2...

= \Ruby>

: o

A

7. Next, install Hobo XE "Hobo" : (As of August, 2009 it is XE "is" version 0.8.8)

C:\ruby>gem install hobo -v 0.8.8

 [image: image14.png]C:\WINDOWS\system32\CMD. exe

:\Ruby>gen install hoho —v 8.8.8
uccessfully installed hobosupport-8.8.8
uccessfully installed hobofields—8.8.8
uccessfully installed mislav-will paginate-2.3.11
uccessfully installed hobo-8.8.8

uccessfully installed activesupport=2.3.3
uccessfully installed activerecord-2-3.3
uccessfully installed rack-1.8.8

uccessfully installed actionpack=2.3.3
uccessfully installed actionmailer2:3.3
uccessfully installed activeresource-2.3.3

18 gens installed

Installing »i documentation for hobosupport—0.8.8
Installing ri docunentation for hohofields=8.8.8.
Installing »i documentation for mislav-will paginate-2.3.11...
Installing ri docunentation for hoho-8.8.8.

Installing »i documentation for activesupport-2.3.3.
Installing ri docunentation for activerecord-2.3.3...
Installing ri docunentation for rack-1.8.9.
Installing ri documentation for actionpack-2.3.3.
Installing ri docunentation for actionmailer-2:313...
Installing ri docunentation For activeresource=2 3.3
Installing RDoc documentation for hobosupport-0.8.8.
Installing RDoc documentation for hobofields=8.8.8...
Installing RDoc documentation for mislav-uill paginate-2.3.11...
Installing RDoc documentation for hoho-8.8.8.-.

Installing RDoc documentation for activesupport=2.3.3...
Installing RDoc documentation for activerecord-2.3.3

Installing RDoc documentation for rack-1.8.8...
Installing RDoc documentation for actionpack-2.3.3...
Installing RDoc documentation for actionmailer-213.3
Tnstalling RDoc documentation for activeresource~2.3.3.

= \Ruby>
<

[image: image349.png]BEE]

:\Rubygen install rails —v 2.3.2
uccessfully installed activesuppo
uccessfully installed activerecor
uccessfully installed actionpack-:
uccessfully installed actionmaile
uccessfully installed activeresow
uccessfully installed rails—2.3.2
gens_installed
Installing »i documentation for ac
Installing ri documentation for ac
Installing ri documentation for ac
Installing ri documentation for ac
Installing ri docunentation for ac
Installing RDoc docunentation for
Installing RDoc docunentation for
Installing RDoc docunentation for
Installing RDoc docunentation for
Tnstalling RDoc documentation for

= \Ruby>

rt=2.3.2
a-2.
2.3.2

tivesupport=2.3.2. ..
tiverecord-2.
tionpack-2.3
tionmailer-
tiveresource
activesupport!
activerecord-2.
actionpack-2.
actionmailer:
activeresourc:

8. Check your installation by using the “gem list XE "gem list" ” command to XE "to" show all Ruby gems XE "gems" that have been installed:

C:\ruby>gem list XE "gem list"

[image: image350.png]¥ [my-first-app
Va0
[controllers
< applcationcb
'3 contacts_controllr.rb
S front_controller.tb
'3 users_controller.to
» [helpers
v models
& contactrb
guestro
userb,
S user_mailer.tb
» [P viewhints
v views
v contacts
> frome
» [ayouts
» Ctagibs
» 7 user_mailer
 r[Tusers
» [config
vita
£ development.sqlite3
[migrate
5 20090216191910_hobo_migration_Lrb
® schema.rb

ool

{7

[image: image15.png]C:\WINDOWS\system32\CMD. exe

e LOGAL GEMS

ctionmailer <2.3.3
ctionpack (2.313.
ctiverecord <2.3.3
ctiveresource <
ctivesupport (2.
uilder €2.1.2>
9i_nultipart_eof Ffix (2.5.8)
Sl €0.3.6>

>euby (126.12)

en_plugin (8-2.3)

obo <0.8.8)

obofields (8.8.8)

obosupport <8.8.8>

oe (2.3.3>

oe—seattlerh (1.2.1>

pricot (8.6

logdr <1.8.5>

minitest ¢i.4.2)

mislav=uill paginate ¢2.3.11)
pongrel ¢1.£.5>

ake 0-6.7,"8.7.:3)

ubyforge (1.8
ubygens-update (1.3.5>
4.0)

ession <2
ources <.
qlited-ruby <1
in32-api (1.8.4>
in32-clipboard (8.4.3>
in32-dir 8.3.2)
in32-eventlog (8.4.6)
in32-file <0.5.43
in32-file-stat <1.2.7>
in32-process (8.5.35
in32-sapi <8.1
in32-sound
indows—api ¢
indows—pr <8.

\Ruby>
<

2.3>

If you find that a gem was not automatically installed (perhaps one of the host sites was not responsive) you can install missing ones individually, for example:

C:\ruby>gem install hoe –v 2.3.3

9. Finally, look at your complete installation environment with the “gem env XE "gem env" ” command:

C:\ruby> gem env XE "gem env"

 [image: image16.png]Select C:\WINDOWS\system32\CMI

< \Rubydgem env
fubyGens Enyironment
RUBYGEMS UERSION: 1.3.5
RUBY 'UERSION: 1.8.6 (3087-89-24 patchlevel 111> [i386-mswin321
INSTALLATION DIRECTORY: c¢:/Ruby/Lib/ruby/gens/1.8
RUBY EXECUTABLE: c:/Ruby/bin/ruby.exe
EXECUTABLE DIRECTORY: c:/Ruby/bin
FUBYCENS ‘FLATFORNS :
= ruby
~ x86-mswin32-68
- GEM PATHS:
= ¢z /Ruby/Lib/ruby/gens /1.8
- C:/Documents and Settings/odall/.gen/ruby/i.8
~ GEM_CONFIGURATION:
pdate_sources => true
erhose => true
enchnark => false
acktrace => false
ulk_threshold => 1808
sources => ["http://gens rubyforge.org”. "http://gems. rubyonrails.org”. "http://gens.github.
som”, Vhttp://gems.github.con”, "http://gems.rubyonrails.org"l
— REMOTE SOURCES : []
= http://gens .rubyforge .org
— http://gens .rubyonrails.org
~ http://gens .github.com
~ http://gens .github.con
- http://gens .rubyonrails.org

= \Ruby>

Figure 17: Condole output from the "gem env" command

Note. If you find the need to XE "to" start completely fresh, simply delete the folder where ruby resides, along with all the subfolders, and remove the path to /ruby/bin in your Windows environment.
For the latest instructions and further resources, please check http://hobocebtral.net
Installation Summary

1. The Ruby interpreter, which in this case is XE "is" a Windows executable. This engine is called MRI for “Matz XE "Matz" ’s Ruby Interpreter”. http://en.wikipedia.org/wiki/Ruby_MRI. There are a variety of other interpreters and implementations available, including JRuby http://jruby.org/ and Enterprise Ruby (http://www.rubyenterpriseedition.com/), which the authors have used successfully with Hobo XE "Hobo" . The upcoming MagLev (http://maglev.gemstone.com/status/index.html) implementation looks very promising for large-scale applications.
2. The Ruby on Rails (RoR) Model-View-Controller XE "Model-View-Controller" (MVC XE "MVC") framework which is XE "is" written using Ruby.

3. The Hobo XE "Hobo" framework which enhances, and in some cases replaces, RoR functionality, particularly on the View and Controller portions of the (MVC XE "MVC") web development framework. Hobo is XE "is" written in Ruby. One of Hobo’s secret weapons is the powerful and succinct DRYML XE "DRYML" (Don’t Repeat Yourself Markup Language).

4. The SQLite database and related Ruby gem (sqlite3-ruby) that makes prototyping quick and painless. SQLite is XE "is" a robust and widely used database engine for embedded systems and is the repository used by the Firefox browser.
5. The Mongrel HTTP/web server written in Ruby. This is XE "is" a fast and dependable server for desktop development work. For production implementation they’re a variety of options XE "options" , including the popular Phusion Passenger (aka mod_rails), which can be used in conjunction with the Apache HTTP server. http://www.modrails.com/. With JRuby you can run on JBoss, Glassfish, etc.

6. A variety of add-on gems XE "gems" (ruby modules or “libraries”) that each framework has included as “dependencies”. For example, mislav_will-paginate is XE "is" used by Hobo XE "Hobo" for pagination of lists on web pages.

Now you are ready for the tutorials!

Note: We suggest you work through the tutorials using the default and efficient SQLite database engine. Since Hobo XE "Hobo" is XE "is" database independent, you don’t need to XE "to" worry about using different instructions for each database flavor. However, if you would like to jump right in using your favorite engine, see Chapter 6 - Database Tutorials for how to configure Hobo to use Oracle XE "Oracle" or MySQL XE "MySQL" .

CHAPTER 3 - BEGINNING TUTORIALS

Introductory Comments
Tutorial 1 - Directories and Generators XE "Directories and Generators"

Changing Field Names" Tutorial 2 - Changing Field Names and Displaying Hints
 XE "Changing Field Names and Displaying Hints"

 XE "Displaying Hints"
Tutorial 3 - Field Validation XE "Field Validation"
Tutorial 4 - Introduction to Permissions XE "Introduction to Permissions"

 XE "Permissions"
Hobo" Tutorial 5 - Hobo Controllers
 XE "Hobo Controllers"
Tutorial 6 - Editing the Navigation Tabs XE "Editing the Navigation Tabs"

 XE "Navigation Tabs"
Model Relationships" Tutorial 7 - Model Relationships I

Model Relationships" Tutorial 8 - Model Relationships II

Introductory Comments

If you explain a magic trick before it is XE "is" performed you risk spoiling the enjoyment. There will be plenty of time after you work through a few of the tutorials to XE "to" learn what is going on “behind the curtain.”

So, in the spirit of this adventure we will explain just enough right now to XE "to" allow you to dive in head first…

Tutorial 1 – Directories and Generators XE "Directories and Generators"

You will create a single-table application that demonstrates how Hobo XE "Hobo" constructs a nice user interface that includes a built-in login system and basic search XE "search" capability.

Application: my-first-app

Topics

· Creating a Hobo XE "Hobo" application
· Learning the Hobo XE "Hobo" Directory structure
· Generating Hobo XE "Hobo" models and controllers with hobo_model XE "hobo_model" _resource XE "hobo_model_resource"
· Generating Hobo XE "Hobo" models with hobo_model XE "hobo_model"
· Generating Hobo XE "Hobo" controllers with hobo_model XE "hobo_model" _controller XE "hobo_model_controller"
· Creating Migrations and Databases with hobo_migration XE "hobo_migration"

 XE "migration"
· Editing Models and propagating the changes with hobo_migration XE "hobo_migration"

 XE "migration"
Application: my-first-app

Steps

1.
Description of development tools. You will use three tools to XE "to" do the work in these tutorials. They include XE "include" :

· A shell command prompt to XE "to" run scripts

· A text editor for you to XE "to" edit your application files

·
 A browser to XE "to" run and test your application

Ordinarily you will have two shell windows or tabs open: one from which to XE "to" run Hobo XE "Hobo" scripts or operating system commands and one from which to run a web server (Mongrel in these tutorials). These tutorials are not done with an integrated development environment (IDE).

2.
Create XE "Create" a Hobo XE "Hobo" application directory. Before you create your first Hobo application, create a directory called tutorials. This will be the directory where you keep all of your Hobo tutorials. Navigate to XE "to" the tutorials directory using your shell application.

You should now see the following prompt:

tutorials>

3.
Create XE "Create" a Hobo XE "Hobo" application. All you have to XE "to" do to create a Hobo application is XE "is" to issue the Hobo command:

tutorials> hobo my-first-app

You will see a log of what Hobo XE "Hobo" is XE "is" creating go by within the shell window that you will better understand as you learn Hobo’s directory structure.

Take a moment to XE "to" confirm that no error messages were displayed. At this point, the main thing that can cause an error is XE "is" an incomplete installation. So if you have an error, refer to Chapter 2’s installation instructions and make sure you have completed all of them correctly.

Finish off this step by moving to XE "to" your application’s directory:

my-first-app>

Using Windows Explorer you should see a folder structure similar to XE "to" the following:

[image: image351.png]contactrb o comact_nints.1b

my-first-app

VEiﬁw " () class| Contactiints < Hobo::ViewHints
» [controllers

» [helpers field_names :
v models

ame => "Friend”, :address_1 => "Address"

B contacert

S guestrd

S usero

S user materss
v Bviewhints

B contact_hints.1b

| end

[image: image17.png]B my first-app
Fie Edt Vew Favortes Took Hep

Qe -) (B st [o

adiress £ Cotutorilsimy-first-app

Folders

= 2 tutorials
= 3 my-irst-app.
EISE
122 controllers
122 helpers
122 models
2 views
12 front
0 layouts
2 taglbs
122 user_maler
12 users.
& & confi
122 environments
12 initslizers
12 locales
D
0 doc
=1
Dileg
12 public
12 sript.
(ST
Dt
122 vendor

sarpt

vendar

README
Fil
1018

5]
5]
5]
5]
5]
5

4.
Run a Hobo XE "Hobo" migration XE "migration" . This step, the “migration”, creates the necessary database entities for the application. Execute your first hobo migration by issuing the following command.

my-first-app> ruby script/generate XE "ruby script/generate" hobo_migration XE "hobo_migration"

 XE "migration"
After executing this command you will again see a log of what Hobo XE "Hobo" is XE "is" doing in the shell. Again make sure there are no errors in the execution. If there is an error, the most common mistake will be a misspelling in the command above.

You will get this message when issuing the below command:

What now: [g]enerate migration XE "migration" , generate and [m]igrate now or [c]ancel?

Answer with an ‘m’ (don’t use the quotation marks) to XE "to" generate a migration XE "migration" (generate) and execute a migration (migrate) now.

Now you will be prompted with the following message:

Migration filename:

(you can type spaces instead of '_' -- every little helps)

Filename [hobo_migration XE "hobo_migration"

 XE "migration" _1]:

Respond by hitting the return key to XE "to" accept the proposed filename. Hobo XE "Hobo" will log what it is XE "is" doing and you should then be returned to your command prompt.

my-first-app>

Note for Rails developers XE "Rails developers" : Any time you run a Rails generator that creates a model, it will also create a migration XE "migration" file. You execute the migration file by issuing the following command: rake XE "rake" db:migrate XE "rake db:migrate" . With Hobo XE "Hobo" , the rake command is XE "is" unnecessary to XE "to" execute migrations XE "migrations" because hobo_migration XE "hobo_migration" takes care of it when you select the ‘m’ option from above.

Hobo XE "Hobo" does not create the migration XE "migration" until you issue the hobo_migration XE "hobo_migration" command and will continue on to XE "to" execute it if you choose the ‘m’ option as you did above.

The primary thing that hobo_migration XE "hobo_migration" does is XE "is" to XE "to" look at your models, and then both build and execute a migration XE "migration" as a result of this single command.

When you started my-first-app by issuing the Hobo XE "Hobo" command, Hobo generated a user model automatically for you. So the hobo_migration XE "hobo_migration" generator will create a migration XE "migration" file from the User model and a users table. Let’s take a look now.

You will learn in subsequent steps that when you edit a model, the hobo_migration XE "hobo_migration" generator detects this change and creates a new migration XE "migration" file to XE "to" use to alter the database.

6.
Examine Directory changes after first migration XE "migration" . In the following figure, you can see that the db directory is XE "is" now populated. The file, development.sqllite3, is the database file. The hobo_migration XE "hobo_migration" _1.rb file defines the database table that will be created when the migration is executed. The schema.rb file shows the current database schema XE "database schema" after all migration executions to XE "to" date.

[image: image352.png]["admin@barquin.com

New Contact

Friend

Company

Address

[image: image18.png]vitdb
2 development.salite3

v [migrate
'+ 20090216191910_hobo_migration_L.rb
chema.rb

Take a look at the schema and you will see that it corresponds to XE "to" the migration XE "migration" file.

Note. [The User model does not have all the fields that are implemented in the database. Hobo XE "Hobo" does not expose all of the User fields but reserves them for its own use.] In general, fields defined in a model, will end up in both the migration XE "migration" file and schema as you will see below.

7.
Test out your application. Create XE "Create" a second shell window (or tab).

You are now going to XE "to" start a local web server called Mongrel on your computer. This will enable you to run the Hobo XE "Hobo" application and see what a deployed application looks like in your browser.

Navigate to XE "to" your application directory and fire up the Mongrel web server by issuing the following command at your command prompt.

my-first-app> ruby script/server XE "ruby script/server"

While your server is XE "is" executing, it does not return you to XE "to" your command prompt. As you run your application, it logs what it is doing to this shell. You can terminate the Mongrel server by typing ctl-c and restart it the same way you started it above, but do not terminate the server.

8.
Open your application in a web browser. Type the following URL into your browser URL window and you should see the following result. Note the User login in the upper right and the search XE "search" capability.

http://localhost:3000/

Note the User login in the upper right and the search XE "search" capability.

[image: image19.png]My First App

Welcome to My First App

Congratulations! Your Hobo Rails App is up and running
« To customise this page: edit app/views/front/index.dryml

9.
Create XE "Create" some accounts. Click the Sign up link above and create an account XE "account" . The Hobo XE "Hobo" permissions system won’t let you do anything until you do this.

Note. The first person to XE "to" register is XE "is" assigned the admin privileges by Hobo XE "Hobo" . Notice that in the upper right-hand corner of your web page there is a drop-down XE "drop-down" list of created users that allows you to sign in automatically to any of the user accounts without going through the login page if you are in development mode. This is turned off in production mode.

Create XE "Create" another account XE "account" . We will call this and all other accounts you create user accounts. It is XE "is" a good idea to XE "to" have at least one admin account and one user account as you go through these tutorials. That way you can exercise the permission system and other features you will be learning about.

Log out of the user account XE "account" you just created and login to XE "to" the admin account for now.

Note. You will use the admin email address and password to XE "to" login, not the name XE "name" .

Note that in the upper left corner of your web page, there is XE "is" a drop down box that lets you automatically sign in to XE "to" any of your accounts without going through the login page.

[image: image353.png]New Contact

= Friend can't be blank

Friend

PUt your friends's name here,

Company
Where doss yhour friend work?

T ™™ DWW o e Sveeperemr

[image: image20.png]

Now realize that you have done nothing but run a couple of generators and you have a decent login capability.

10.
Check the changes in the views/taglibs XE "taglibs" directory. Notice that since you fired up your web server, there is XE "is" now a change in the taglibs directory. There is a new branch called views/taglibs/auto/rapid and three files in that directory: cards.dryml XE "cards.dryml" , forms.dryml and pages.dryml XE "pages.dryml" . We are going to XE "to" show you a few things to pique your curiosity but we will not cover how Hobo XE "Hobo" handles views in any detail until the intermediate tutorials. We will just make a few high level comments here in case you know something about Ruby on Rails and so you know what is coming.

Familiarize yourself with the contents of these files. You will see many lines that look similar to XE "to" :

<def tag= new-page>

.....

</end>

You will see mark-up in between the “def” and “end” tags. The contents are what we have mentioned before as “tag definitions.” Hobo XE "Hobo" uses them to XE "to" construct view templates on the fly.

These three files contain the libraries of tags that Hobo XE "Hobo" uses to XE "to" construct view templates.

[image: image354.png]New Contact

vt be blank
canit be blank

Friend
PUt your friends's name here,
Company
Where doss yhour friend work?
Address [
city

o sy SRS e AP N

[image: image21.png]VI views
» [fromt
» Playous
v agis
application.drymi
auto
v Frapid
cards dryml
forms drymi
pages.drymi
» [themes
» [user_mailer
b [Fusers

Remember this. When Hobo XE "Hobo" makes a web page, it takes tags from the pages.dryml XE "pages.dryml" file. When it wants to XE "to" construct a data entry form XE "form" , tags in the pages.dryml file call tags in the form.dryml file. When Hobo wants to list the records from a table, tags in the pages.dryml file call tags in the cards.dryml XE "cards.dryml" file. Card tags define how individual database table records are rendered.

(Actually, these files are a copy of what Hobo XE "Hobo" is XE "is" doing on the fly behind the scenes but it is easier to XE "to" think of it in this way.)

You will learn that you can edit and redefine the tags from the rapid directory. When you want your changes to XE "to" be available to the application, you put the new tags in the application.dryml XE "application.dryml" file. When you want them to be available only in a particular view template you put them in a template file under the directory named for the model.

So far, we only have the front (home page) and the users template directories. You will see after creating a new model (hobo_model XE "hobo_model" _resource XE "hobo_model_resource" or hobo_model) and running hobo_migration XE "hobo_migration"

 XE "migration" , that directories will be created named for your new models.

11.
Create XE "Create" a new model and controller. Let’s create a simple contacts model and see what Hobo XE "Hobo" does for us.

my-first-app> ruby script/generate XE "ruby script/generate" hobo_model XE "hobo_model" _resource XE "hobo_model_resource" contact name XE "name" : XE "name:" string company:string

This generator will create both a model and controller. Execute it and then take a look at what has changed XE "changed" in your application directories.

You will see the contacts_controller.rb controller file, the contact.rb model file and the views/contacts template directory but no new migration XE "migration" in the /db directory.

[image: image22]
Figure 24: Folder location for Models and Views

12.
Run a Hobo XE "Hobo" migration XE "migration" . Before you run the migration, take a look at the contact.rb model file. We just want to XE "to" review the relevant part for now. The permissions part will be explained in a later tutorial.

class Contact < ActiveRecord::Base

 hobo_model XE "hobo_model" # Don't put anything above this

 fields do

 name XE "name" :string

 company :string

 timestamps XE "timestamps"
 end

Here is XE "is" the code that declares the fields that you want in your database table that will be called contacts. When you ran hobo_model XE "hobo_model" _resource XE "hobo_model_resource" it generated this code.

When you run hobo_migration XE "hobo_migration" , Hobo XE "Hobo" will take this declaration and create a migration XE "migration" file. It will then in turn use the migration file to XE "to" create the database table. These two steps will be executed within a single Hobo migration. You could do them separately but we will not do that here.

Now run hobo_migration XE "hobo_migration"

 XE "migration" and observe what happens.

my-first-app> ruby script/generate XE "ruby script/generate" hobo_migration XE "hobo_migration"

 XE "migration"
Remember to XE "to" select the ‘m’ option to both create and execute the migration XE "migration" file. Then hit return to accept the proposed name XE "name" of the migration file.

You will notice some changes now in the views/db directory of your app.

[image: image355.png]admin@barguin com Loggedinas Admin Account Log out

One Table

Recipes

There are 3 Recipes

New Recipe

Barbecued Chicken Wings

Omelet

Hamburger

[image: image23.png]vitdb
development.salite3
v migrate
20090216191910_hobo_migration_L.rb
& 20090220003224_hobo_migration_2
‘schema.rb

There is XE "is" a new migration XE "migration" file and changes in your schema file as well. The new migration file contains the following code:

 def self.up

 create_table :contacts do |t|

 t.string :name XE "name"
 t.string :company

 t.datetime :created_at

 t.datetime :updated_at

 end

The schema, reflecting this code, shows the current state XE "state" of the database in the db/schema file:

 create_table "contacts", :force XE "force" => true do |t|

 t.string "name XE "name" "

 t.string "company"

 t.datetime "created_at"

 t.datetime "updated_at"

 end

Now check out the application in your browser.

 http://localhost:3000/

[image: image24.png]Contacts

New Contact

No contacts to display

Now you have a new tab called “Contacts.”

13. Create XE "Create" some contacts. Now you should be able to XE "to" create a new contact by clicking the ‘New Contact’ link in the Contacts tab. Display this link in the above screenshot. Go ahead and create a couple of new contacts to convince yourself that the database entry actually works. While you are at it also try editing a contact.

So far, Hobo XE "Hobo" is XE "is" doing a pretty decent job. You have a usable UI XE "UI" , I/O capability for your contact model and a login system and you have written no code.

14.
Try out the search XE "search" facility. Type the name XE "name" of one your contacts to XE "to" exercise the search facility. [search only searches name and not other fields. Even for this field, partial word searches don’t work, need at least three characters for a search]

15.
Add columns to XE "to" the database. Now we are going to add a couple more fields to the model and have hobo add columns to the database. In this and the following steps, you will get a sense for the power of the hobo_migration XE "hobo_migration"

 XE "migration" generator. Since we have already generated our model using hobo_model XE "hobo_model" _resource XE "hobo_model_resource" , we do not have to do that again. Go into the model and add some new fields. Your code should now look like this:

class Contact < ActiveRecord::Base

 hobo_model XE "hobo_model" # Don't put anything above this

 fields do

 name XE "name" :string

 company :string

 address_1 :string

 address_2 :string

 city :string

 state XE "state" :string

 date_met :date

 married :boolean

 age :integer

 notes :text

 timestamps XE "timestamps"
 end

Make sure you save your changes and run hobo_migration XE "hobo_migration" . Select the ‘m’ option and accept the default filename for the migration XE "migration" .

my-first-app> ruby script/generate XE "ruby script/generate" hobo_migration XE "hobo_migration"

 XE "migration"
Now refresh your browser. Go to XE "to" the contacts tab and click ‘New Contact ’

[image: image356.png]Recipe : One Table - Mozilla Firefox
Ele Edt View Hstory Bookmarks Ioos Help

O - ¢ X G (Ol

Most Visited £ Getting Started [31] Latest Headines

One Table

Home || Recipes
Hamburger

Country

odall@barquin com

Logged n as Owen

Account

Edit Recipe

Logout

tp:flocalhost:3000jrecipes/3-hamburgerfedt

[image: image25.png]i | ooged inas admin Account | Log out

My First App
Home Contacts SEARCH _

New Contact

Married o

Age

Note what Hobo XE "Hobo" has done for you. It determines which entry controls XE "controls" you need based on the type of field you defined in your model. It has one-line fields for strings, a set of three combo boxes for dates, a one-line field for integers, a check box for boolean field, and a multi-line box for text fields. Later you will see that Hobo can provide the controls you need for multi-model situations.

Hobo XE "Hobo" has also provided reasonable names and styles form XE "form" the field names. It removed the underscore characters and appropriately capitalized words to XE "to" give the presentation a nice look and feel.

16.
Remove columns to XE "to" the database. Now suppose you decide that you need only one address field and you wish to remove it. Go back to the Contact model and delete it (we just commented it out with the # sign so you can see things clearer.)

[image: image357.png]Country : Two Table - Mozilla Firefox
Edt Vew Hgory Gooknarks Iools tep

O - ¢ X & ([Oleimcrmomamonmon

Most visited ¥ Getting Started (5. Latest Headines

admin@barguin com ¥

Two Table

Home

Countries

] || Recipes

American Edit Country

[image: image26.png]my-frst-app contactrb,
'BE" " £ class Contact < ActiveRecord: :Base
» [controllers
> relpers hobo_nodel. # Don't put anything above thi
v [models -mode] put anything above this
B comacts o fields do
Py nane istring
< user_mailer.rb company :string
b [viewhints address_1 :string
» [Fviews #address_2 :string
» [config city :string
= state :string
»[Fdoc date_met :date
> married :boolean
> les age +integer
> Bousic notes :text
Bl Rakefile timestamps
S reaome o end

> script
> Ttest

> Tmp

» (7 vendor

class Contact < ActiveRecord::Base

 hobo_model XE "hobo_model" # Don't put anything above this

 fields do

 name XE "name" :string

 company :string

 address_1 :string

 #address_2:string

 city :string

 state XE "state" :string

 date_met :date

 married :boolean

 age :integer

 notes :text

 timestamps XE "timestamps"
 end

Run hobo_migration XE "hobo_migration"

 XE "migration" again.

my-first-app> ruby script/generate XE "ruby script/generate" hobo_migration XE "hobo_migration"

 XE "migration"
Hobo XE "Hobo" notices that you have deleted a model field and responds in this way.

CONFIRM DROP! column contacts.address_2

Enter 'drop address_2' to XE "to" confirm:

You respond by typing what it asks (without the quotes).

CONFIRM DROP! column contacts.address_2

Enter 'drop address_2' to XE "to" confirm: drop address_2

Complete the migration XE "migration" as you have learned above. Then go check the db directory. You will see another migration, *_hobo_migration XE "hobo_migration" _4.rb with the following code. (The asterisk (*) here stands for the time/date stamp that precedes the rest of the migration file name XE "name" .)

class HoboMigration4 < ActiveRecord::Migration

 def self.up

 remove_column :contacts, :address_2

 end

 def self.down

 add_column :contacts, :address_2, :string

 end

end

Check out the schema.rb file now.

ActiveRecord::Schema.define(:version => 20090220154125) do

 create_table "contacts", :force XE "force" => true do |t|

 t.string "name XE "name" "

 t.string "company"

 t.datetime "created_at"

 t.datetime "updated_at"

 t.string "address_1"

 t.string "city"

 t.string "state XE "state" "

 t.date "date_met"

 t.boolean "married"

 t.integer “age”

 t.text "notes"

 end

You can see that address_2 is XE "is" gone.

17.

Adding and removing database tables. You can also use hobo_migration XE "hobo_migration" to XE "to" remove a table. Simply delete the entire model file and run hobo_migration XE "migration" . As of Hobo XE "Hobo" version 1.0, only the table will be removed. You will have to manually remove the associated controller, helper and viewhint files, and the view template directory and files or you could create additional problems for yourself.

18.

Going back to XE "to" earlier migrations XE "migrations" . [Hobo XE "Hobo" does not provide this facility within hobo_migration XE "hobo_migration"

 XE "migration" . You will need to use the rake XE "rake" db:migrate XE "rake db:migrate" VERSION= XXX procedure. You can roll back your tables but the rest of your changes will not be synchronized so you will have to perform manual edits.]

Tutorial 2 – Changing Field Names XE "Changing Field Names" and Displaying Hints XE "Changing Field Names and Displaying Hints"

 XE "Displaying Hints"
We are going to XE "to" continue from the previous tutorial and show you how to do rename fields in a couple of different ways and improve your UI XE "UI" with hints about what to enter in a particular field.

Topics

· Two ways of changing field names displayed
· Displaying data entry hints
· Changing field sizes: Hobo XE "Hobo" does not provide this facility now.
Application: my-first-app

Steps

1.
Rename a database column. In Tutorial 1, we showed you how to XE "to" make changes to your database by editing the model file. You can rename a field and database column in the same way. We will try this with the married field. Go to your contacts.rb file and rename married to married_now and run the hobo_migration XE "hobo_migration"

 XE "migration" .

class Contact < ActiveRecord::Base

 hobo_model XE "hobo_model" # Don't put anything above this

 fields do

 name XE "name"

 :string

 company
 :string

 address_1 :string

 #address_2 :string

 city
 :string

 state XE "state"

 :string

 date_met :date

 #gender :string

 #married :boolean

 married_now :Boolean

 age
 :integer

 notes :text

 timestamps XE "timestamps"
 end

my-first-app> ruby script/generate XE "ruby script/generate" hobo_migration XE "hobo_migration"

 XE "migration"
Hobo XE "Hobo" should now respond:

DROP or RENAME?: column contacts.married

Rename choices: married_now

Enter either 'drop married' or one of the rename choices:

Hobo XE "Hobo" is XE "is" trying to XE "to" confirm that what you really want to do is rename the column and not drop it. Enter married_now to rename. Check your schema.db file and you will see that the column has been renamed.

Programming note. Do not use question marks (?) in field names. [You will get an error.]

Refresh your browser and you will now see the field labeled ‘Married Now.’

2. Changing field names. There is XE "is" no need to XE "to" change the name XE "name" of a field or column if all you wish to do is to change the name of a label XE "label" in the user interface. Hobo XE "Hobo" provides this facility in its viewhints capability. Every model in a Hobo application has a corresponding viewhint file in the viewhints directory. Go to the contact_hints.rb file in the viewhints directory and enter the following code.

[image: image358.png]admin@barguin com ¥

Four Table

Categories || Countries

My Recipes
Thers are 3 Resipes
New Recipe

Barbecued Chicken Wings
0 Category Assignments

Omelet
0 Category Assignments

L N W eV SN S I L EN

[image: image27]
Refresh your browser and you should see the fields relabeled with your choices from above. Notice that a migration XE "migration" is XE "is" not necessary when using viewhints.

[image: image28]
3.
Using view hints XE "view hints" to XE "to" suggest field uses. The viewhints file also provides the facility to provide a suggestion below the field on what to enter into it. Edit your contact_hints.rb file to look like this.

class ContactHints < Hobo XE "Hobo" ::ViewHints XE "ViewHints"
 field_names XE "field_names" :name XE "name" => "Friend", :address_1 => "Address"

 field_help :name XE "name" => "Put your friend's name here.",

 :company => "Where does your friend work?",

 :married_now => "Married or not?"

end

[image: image29.png] contactb | contactpines. 1o | guestro |
(2| class ContactHints < Hobo::Viewtints

v [my-first-app
V2
» [controllers.
» [helpers
v models
contact.rb.
< guestrb
< userrb
< user_mailer.rb
v [vewnints

Field_nanes :name => "Friend”, :address_1 = "Address"
field_help :name => "Put your friend's name here
ompany => “Where does your friend work?",
rried_now = “Married or not?"

| end

[image: image359.jpg]Grants
& National Research Initiative

© Small Business Innovation
Research

More.
© Request for Applications
(RFAS)

© Application Information

Now refresh your browser and you will see hints on the field use in a small font below:

[image: image30.png]My First App

Home Contacts

New Contact

Friend

Company

Address
city
State
Date Met

Married Now

Age

Logged in as admin

Account

Log out

Put your friend's name here.

Where does your friend work?

(200 By 1)

o

Married or not?

Programming note. In the Intermediate tutorials you will also learn how to XE "to" use yet another way to manipulate the labels on a web page by using Hobo XE "Hobo" ’s view markup language called DRYML XE "DRYML" (Don’t Repeat Yourself Markup Language). DRYML is XE "is" used by the Rapid UI XE "UI" generator that creates much of Hobo’s magic.

4. Changing field sizes. As of the latest version of Hobo XE "Hobo" , the way to XE "to" change the field length on an input form XE "form" is XE "is" to modify the Cascading Style Sheet (CSS XE "CSS") file record used by Hobo’s “Rapid” UI XE "UI" generator: rapid-ui.css, located at:

/my-first-app/public/hobothemes/clean/stylesheets XE "stylesheets" /rapid-ui.css

[image: image31.png]my-first-app

[* contact.rb | x contact hints.rb [clean.css | rapid-ui.css | guest.rb |

Fapp
» [controllers.
» [helpers
v models
contact.rb.
=l guestrb
< userrb
< user_mailer.rb
v [viewhints
& contact_hints.rb
» Pviews
= config
Tdb
doc
=
iog
public
& 404 el
& 422.mmi
& 500t
v hobothemes
v cean
» [images
[stylesheets
clean.css
rapid-uicss

o

q

q

» [mages
> [javascripts
obote.txt

1
div. conmpletions-popup ul 1i.selected { background-color: #£fb;}
div. completions-popup ul 1i {
List-style-type:none;
display:block;
margi
padding:2px;
cursor:pointer;

-field-lTist {width:100%;
.field-list td {vertical-lign: middle;}
.field-list th {font-weight: bold;}

.field-list th, .field-list td {padding: Spx 0;}
.field-list th {padding-right: 10px;}

.field-list td. field-label {
text-align: left; width: 1px; white-space: nowrap; vertical-align: top;
padding-top: 10px; padding-bottom: 10px;

¥
.field-list textarea, .field-list input[type=text], .field-list input[type=password] { width: 99%; margil

/*input[type=text].wide { width: 100%; }*/
textarea { height: 170px; }

textarea.wide { width: 100%; }

textarea. tall { height: 350px; }

Tutorial 3 – Field Validation XE "Field Validation"
You will be introduced to XE "to" a couple of ways of validating data entry fields. This is XE "is" a capability that is derived from what are called Rails helper methods. There are a couple of enhancements Hobo XE "Hobo" has made for the most common need.

Topics

· Field validation using Hobo XE "Hobo" ’s enhancements
· Field validation using Rails helper methods
· Validation on save, create and update XE "update" processes
1.
Make sure data is XE "is" entered. Open up the model contact.rb file. Add the following code to XE "to" the “name XE "name" ” field definition

name XE "name" :string, :required

This is XE "is" the simplified version that Hobo XE "Hobo" provides. To do this in the “normal” rails way, you would need to XE "to" add this line after the “fields/do” block:

validates_presence_of :name XE "name"

(The difference in the two is XE "is" a matter of taste, but the former seems “DRYer” to XE "to" us.)

By default Hobo XE "Hobo" will provide a message if a user fails to XE "to" enter data. Try it out by trying to create a contact record with no data in it. Click the Contacts tab and then New Contact. Without entering anything in the form XE "form" , click Create XE "Create" Contact.

[image: image32]
2.
Validate multiple fields. In order XE "order" to XE "to" validate multiple fields, add the “:required” label XE "label" to another field:

address_1 :string, :required

Note that use must use the model field name XE "name" , not the label XE "label" name you used in the ViewHints XE "ViewHints" file. Click the Contacts tab and then New Contact. Without entering anything in the form XE "form" , click Create XE "Create" Contact.

[image: image33]
Notice the “declarative” nature of this validation. All you need to XE "to" do is XE "is" use the label XE "label" “required” for the name XE "name" and address_1 fields and Hobo XE "Hobo" takes care of all of the logic associated with validation and delivering error messages.

Now let’s try some other validations.

3.
Make sure integer field contains a number. Add this validation to XE "to" the “age” field after the “fields do/end” block:

validates_numericality_of XE "validates_numericality_of" :age

[image: image34.png]18

20

s o, #5820,

ttoddress 2 istring

city string
state string
date_met date
age integer

#tgender istring
s#marvied boolean
married_now :boolear
contract_agree boolean
notes text
timestamps

end

validates_numericality_of :a0=

Now try this out by entering the text “old” in the age field. (Also put something in the name XE "name" and address_1 fields so you won’t trip the validations we put into place earlier in the tutorial.)

[image: image35.png]My First App

Home Contacts

Edit Contact

Remove This Contact

not a number

Friend John a
Put your fiends’s name here.

Company
Where doss yhour fiend work?

Address 3 Elm steet

Gity

state

Date Met

Figure 37: Page view of triggering the "validates_numericality_of XE "validates_numericality_of" " error

Programming note. When you cause a validation error for integer, Hobo XE "Hobo" /Rails replaces what you entered with a zero (0). If the validation rule was not there, the text will be replaced by a zero, but the validation error will not be displayed.

4. Prevent the entry of duplicates. Use the following code to XE "to" prevent a user from entering code that duplicates an existing record with a column value that is XE "is" the same as the new record.

name XE "name" :string, :required, :unique

[image: image36.png]odall@barquin.com

New Contact

To proceed ple:

= Friend has already been taken

Friend Jef

PUt your friends's name here,

Company
hers doss shour Fend work?

Ao o7 eststeat

Gy

sute

Date Mot

Age B

Programming Note. This particular validation will only verify that there is XE "is" no existing record with the same field value at the time of validation. In a multi-user application, there is still a chance that records could be entered nearly at the same time resulting in a duplicate entry. The most reliable way to XE "to" enforce uniqueness is with a database-level constraint.

5.
Including and excluding values. Now suppose we wish to XE "to" exclude people who have an age between 0 and 17, and include XE "include" people under 65 years of age. Try the following code after the “fields do/end” block:

validates_inclusion_of XE "validates_inclusion_of" :age, :in => 18..65, :message => "Must be between 18 and 65"

[image: image37.png]odall@barquin com

New Contact

iend Nancy
Put your friends's name here,

Company
Where does yhour friend work?
Address 530 Litle John
Gty
state
Date Met
hee 5

6.
Validate length of entry. Suppose you wish to XE "to" check the length of a string entry. You can specify a length range in the following way.

validates_length_of :name XE "name" , :within => 2..20, :too_long => "pick a shorter name", :too_short => "pick a longer name"

Try to XE "to" enter a one character name XE "name" and you will get the following response:

 [image: image38.png]admin@barauin.com ¢

Edit Contact

To proceed please correct the following

= Friend - enter a longer onel

Friend

Put your friend's name here.
Company

Where does your friend work?
Address
city
state

Date Met (2009 %) (November +)(22 %)

7.
Validate acceptance. If you wish to XE "to" get the user to accept a contract, for example, you can use the following validation code. Assume you have a Boolean variable named contract_agree which would show up in the UI XE "UI" as a checkbox.

validates_acceptance_of :contract_agree, :accept => true

Hobo XE "Hobo" will generate an error if the contract_agree check box is XE "is" not checked setting the value to XE "to" 1.

[image: image39.png]New Contact

fend

Company

Address
Gty

State

Date Met
™

Married Now

Contract Agree

John
Put your friends's name here,

Where doss yhour friend work?

123 Walnut

8.
Summary. Here is XE "is" the list of validations we accumulated during this tutorial:

address_1 :string, :required

name XE "name" :string, :required, :unique

validates_numericality_of XE "validates_numericality_of" :age

validates_acceptance_of :contract_agree, :accept => true

validates_length_of :name XE "name" , :within => 2..20, :too_long => "pick a shorter name", :too_short => "pick a longer name"

validates_inclusion_of XE "validates_inclusion_of" :age, :in => 18..65, :message => "Must be between 18 and 65"

There are several other very useful validation functions provided by Rails, and the ones that we have shown you above have many other options XE "options" . These functions can provide very sophisticated business rule execution

For example, the following is XE "is" a sample of the list of options XE "options" for the validates_length_of and validates_size XE "size" _of (synonym) declarative expressions:

· :minimum - The minimum size XE "size" of the attribute XE "attribute" .
· :maximum - The maximum size XE "size" of the attribute XE "attribute" .
· :is XE "is" - The exact size XE "size" of the attribute XE "attribute" .
· :within - A range specifying the minimum and maximum size XE "size" of the attribute XE "attribute" .
· :in - A synonym(or alias) for :within.
· :allow_nil - Attribute may be nil; skip XE "skip" validation.
· :allow_blank - Attribute may be blank; skip XE "skip" validation.
· :too_long - The error message if the attribute XE "attribute" goes over the maximum (default is XE "is" : "is too long (maximum is {{count}} characters)").
· :too_short - The error message if the attribute XE "attribute" goes under the minimum (default is XE "is" : "is too short (min is {{count}} characters)").
· :wrong_length - The error message if using the :is XE "is" method XE "method" and the attribute XE "attribute" is the wrong size XE "size" (default is: "is the wrong length (should be {{count}} characters)").
· :message - The error message to XE "to" use for a :minimum, :maximum, or :is XE "is" violation. An alias of the appropriate too_long/too_short/wrong_length message.
· :on - Specifies when this validation is XE "is" active (default is :save, other options XE "options" :create, :update XE "update").
· :if - Specifies a method XE "method" , procedure, or string to XE "to" call to determine if the validation should occur:
 :if => :allow_validation

The method XE "method" , procedure, or string should return or evaluate to XE "to" a true or false value.

· :unless - Specifies a method XE "method" , procedure or string to XE "to" call to determine if the validation should not occur:
 :unless => :skip XE "skip" _validation

The method XE "method" , procedure, or string should return or evaluate to XE "to" a true or false value.

Use a regular expression to XE "to" validate the format XE "format" of an email address on create:

validates_format XE "format" _of :email, :with => /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i, :on => :create

We encourage you to XE "to" read about validation helpers (what Rails calls functions) in the many good Ruby on Rails references. The following is XE "is" a useful on-line reference:

http://api.rubyonrails.org/classes/ActiveRecord/Validations/ClassMethods.html
Tutorial 4 – Introduction to Permissions XE "Introduction to Permissions"

 XE "Permissions"

In this tutorial you will learn some elementary aspects of Hobo XE "Hobo" ’s permission system by changing what the admin user and users can do. Specifically, you will determine whether a user is XE "is" permitted to XE "to" view, create, edit or delete records in the database.

Application: one_table

Topics

· Experiment with altering user permissions.
· Naming conventions for database tables, models, controllers and views.
Steps

1.
Create XE "Create" the Hobo XE "Hobo" application. Create the one_table Hobo application by issuing the following command at the command prompt. Then change directory to XE "to" the subdirectory one_table:

tutorials> hobo one_table

tutorials> cd one_table

one_table>

Recall from Tutorial 1 that this sets up the Hobo XE "Hobo" directory tree and the user model and controller.

2.
Perform the migration XE "migration" . Now perform the first Hobo XE "Hobo" migration to XE "to" create the users table.

one_table> ruby script/generate XE "ruby script/generate" hobo_migration XE "hobo_migration"

 XE "migration"

The hobo_migration XE "hobo_migration" generator creates the Rails migration XE "migration" file containing the users fields and from that the users table in one easy step.

Important Note: Look at the file app\models\user.rb and at the database schema XE "database schema" app\db\schema.rb. Note that there are more fields in the users table than in the user model. [This is XE "is" because Hobo XE "Hobo" creates them independently in the case of the user model.] This will not be the case in general as discussed below. The users table is created in a non-standard way.

3.
Start the web server. Open a new command prompt and navigate to XE "to" the

tutorials/one_table directory. Fire up your web server, the Mongrel server, by issuing the following command.

one_table> ruby script/server XE "ruby script/server"
5.
Initiate the web application. Enter the local URL for the application in your browser’s URL window:

 http://localhost:3000/

You should now see the following displayed on your browser.

[image: image40.png]Guest v

One Table

Welcome to One Table

Congratulations! Your Hobo Rails App is up and running
o T customise this page: adit appviews front/index.dryml

NWM““"‘\MM‘JVI‘&"\

6.
Create XE "Create" user accounts. You will need a couple of accounts to XE "to" exercise the functions of the One Table application. Let’s do this now like you did in Tutorial 1.

Click signup to XE "to" create your first account XE "account" . Remember, by default, the user module assigns administrative privileges to the first account created. We refer to it as the admin account. Logout and create a second account. We will refer to this as the user account in the following tutorials. By default, the user account does not have administrative privileges.

Later in the tutorial, you will learn to XE "to" customize the default permission features.

Log out of the user account XE "account" and login to XE "to" the admin account for now. Remember that you will use the admin email address and password to login, not the name XE "name" .

7.
Create XE "Create" the recipe model. Next create a model using the hobo_model XE "hobo_model" _resource XE "hobo_model_resource" generator, which will be called Recipe. It will contain three fields: title, body XE "body" and country. We will complete this step by rerunning the Hobo XE "Hobo" migration XE "migration" from Step 3. This will take the model definitions and create a migration file and the database table recipes.

one_table> ruby script/generate XE "ruby script/generate" hobo_model XE "hobo_model" _resource XE "hobo_model_resource" recipe title:string body XE "body" :text country:string

This generator created a recipe.rb model from which the hobo_migration XE "hobo_migration" generator will create a migration XE "migration" file and a database table.

Programming Note. When we talk about a model’s name XE "name" we are referring to XE "to" its Ruby Class name which can be found at the top of the file model_name XE "model_name" .rb.

It also created the recipes_controller.rb controller, the recipes_helper.rb helper file, and recipes view folder. Run the hobo_migration XE "hobo_migration"

 XE "migration" generator:

one_table> ruby script/generate XE "ruby script/generate" hobo_migration XE "hobo_migration"

 XE "migration"
IMPORTANT: Hobo XE "Hobo" is XE "is" different from Rails in that the migration XE "migration" file and database table are both the result of the hobo_migration XE "hobo_migration" generator. In Rails, generators typically create both models AND migration files but NOT database tables.

Refresh your browser and you should see a Recipes tab added.

[image: image41.png]admin@barguin com ¥

One Table

IO Recipes

Recipes

New Recipe

No recipes to display.

8.
Confirm your login info. Make sure you are logged in as the administrator. As long as you are logged in, you should see the XE "Create" ” New Recipe” link on the left.

Create XE "Create" three recipes and take care to XE "to" add info in all three fields. You can create them either from the Home or Recipes tab. The finished recipes should be displayed in both the Home tab and the Recipes tab automatically. You can click on any of the names of the recipes to edit them. Try it out.

[image: image42]
Figure 45: Page view of created recipes
9.
Login as a user. Sign out of the admin account XE "account" and sign in as another. Note that you can still see the recipe title. Now, you can click on the recipe title and view the entire recipe record but you cannot create or edit a recipe. This is XE "is" governed by the Hobo XE "Hobo" permissions module. In the next step, you will change the user permissions and see how the user interface responds by automatically providing creation and editing capabilities in the user interface.

10.
Edit permissions: Take a look at the recipe.rb model file.

--- Permissions XE "Permissions" ---

def create_permitted? XE "create_permitted?"

acting_user XE "acting_user" .administrator?

end

def update XE "update" _permitted? XE "update_permitted?"

acting_user XE "acting_user" .administrator?

end

def destroy_permitted? XE "destroy_permitted?"

acting_user XE "acting_user" .administrator?

end

def view_permitted? XE "view_permitted?" (field)

true

end

There are four methods that define the basic permission system: create_permitted? XE "create_permitted?" , update. XE "update" permitted?, destroy_permitted? XE "destroy_permitted?" and view_permitted? XE "view_permitted?" . In exercising the permission system, you are editing Ruby code. The permission methods are defined within Hobo XE "Hobo" . Each method XE "method" evaluates a boolean-valued variable (actually a method on an object) that indicates whether the named action XE "action" is XE "is" allowed or not allowed.

	Method
	Refers to XE "to" permission to:

	create_permitted? XE "create_permitted?"
	create a record

	update_ XE "update" permitted? XE "update_permitted?"
	edit a record

	destroy_permitted? XE "destroy_permitted?"
	delete a record

	View_permitted?(field)
	view a record or field

Figure 46: Table of Hobo XE "Hobo" permission methods

For the code that is XE "is" generated by the hobo_model XE "hobo_model" _resource XE "hobo_model_resource" generator, the method XE "method" is checking whether the acting user, which is the user that is signed on, is or is not the administrator. In practice though, the boolean value may ask another question or a more complex question.

For example, one could write a line of Ruby code that determined if the signed on user was the admin AND the time was between 8:00 AM and 5:00 PM. In other words, there can be other logical determinations but you have to XE "to" know a little Ruby.

	acting_user XE "acting_user" method XE "method"
	Meaning

	administrator?
	first user to XE "to" sign up

	signed_up?
	any user who is XE "is" signed up (including the administrator)

	guest?
	any user who is XE "is" not signed up

Figure 47: Table of Hobo XE "Hobo" "acting_user XE "acting_user" " options XE "options"
For these tutorials, we will use the acting_user XE "acting_user" object and its methods: administrator?, signed_up?, and guest?. Hobo XE "Hobo" encodes information about the user of its applications in the active_user object which determines if the user is XE "is" an administrator, other signed up user or a guest user.

For example, acting_user XE "acting_user" .administrator? equals ‘1’ if the user is XE "is" the administrator and ‘0’ if the user is not. If we place it within the create_permitted? XE "create_permitted?" method XE "method" , Hobo XE "Hobo" only permits users who are administrators to XE "to" create database records related to the model containing the method.

Programming Note. The ‘?’ after signed up [indicates] the method XE "method" is XE "is" a Boolean method.

The meaning of the default permissions code can be summarized simply now. Only the administrator is XE "is" permitted to XE "to" create, update XE "update" or destroy records and anyone can view records. Using the view_permitted? XE "view_permitted?" method XE "method" is a little more involved so we will wait until the intermediate tutorials to tell you about it.

Before trying this out, it is XE "is" useful to XE "to" understand how Hobo XE "Hobo" implements these permissions in within Hobo’s UI XE "UI" . Yes, Hobo not only provides the facility to set permissions but it also takes care of providing the right links and controls XE "controls" within the UI.

· When there is XE "is" no create permission, there is no “Create XE "Create" a New ‘model_name XE "model_name"

 XE "name" ’ “ link.
· When there is XE "is" no update XE "update" permission, there is no edit link and no way to XE "to" populate a form XE "form" with an existing record.
· When there is XE "is" no destroy permission, there is no “Remove this Record?” link.
This will make more sense when you learn about controller actions XE "actions" in the next tutorial. Hobo XE "Hobo" permissions essentially turn controller actions (what users do in the UI XE "UI") on or off depending on defined logical conditions.

Let’s try something out now.

As of now in your code, users who are not the admin can only view the records entered by the administrator. The user has no create, edit or delete permission; these options XE "options" do not appear in the user interface.

Now let’s make a minor change and see how the UI XE "UI" responds.

CHANGE:

def create_permitted? XE "create_permitted?"

acting_user XE "acting_user" .administrator?

end

TO:

def create_permitted? XE "create_permitted?"

acting_user XE "acting_user" .signed_up? XE "acting_user.signed_up?"
end

Update XE "Update" your browser and you will see the New Recipe link appear at the bottom of both the Home and Recipes tabs. Now do the following:
CHANGE:

def update XE "update" _permitted? XE "update_permitted?"

acting_user XE "acting_user" .administrator?

end

def destroy_permitted? XE "destroy_permitted?"

acting_user XE "acting_user" .administrator?

end

TO:

def update XE "update" _permitted? XE "update_permitted?"

acting_user XE "acting_user" .signed_up? XE "acting_user.signed_up?"

end

def destroy_permitted? XE "destroy_permitted?"

acting_user XE "acting_user" .signed_up? XE "acting_user.signed_up?"
end

Click a recipe title. On the right hand side of the screen showing the record, you will see an Edit Recipe link now indicating editing permission. Click this edit link and you will now see a full editing page as well as a Remove This Recipe delete link in the upper right of the page.

[image: image43.png]odall@barquin com

One Table

Omelet

Edit Recipe

£
cheddar cheese
butter

Country sk

Try changing all of the signed_up? methods to XE "to" guest and you will observe that you have full permissions even if you are not signed in.

Complete the tutorial by putting back all three methods to XE "to" signed_up.

Tutorial 5 – Hobo XE "Hobo" Controllers XE "Hobo Controllers"
Topics

· Introduce Hobo XE "Hobo" ’s routing system.
· Hobo automatic actions XE "actions"
· Show examples of permission system working with routing system.
Steps

1.
Demonstrate the controller’s action XE "action" . Hobo XE "Hobo" has a set of built in actions XE "actions" which are its functions for dealing with user initiated requests from browser interactions (clicks). For example, when Hobo displayed the Recipes in Tutorial 3, it is XE "is" the result of the index action found in the controllers/recipes_controller.rb file. Open up this file.

Programming note. Recall that controller and model files contain Ruby code where as view templates contain HTML XE "HTML" with embedded Ruby code.

class RecipesController < ApplicationController

hobo_model XE "hobo_model" _controller XE "hobo_model_controller"

auto_actions XE "auto_actions"

 XE "actions" :all

end

There is XE "is" not much you can see--but there is a lot going on behind the scenes.

The first line is XE "is" similar to XE "to" the first line of the Recipe model we told you about in Tutorial 1. It indicates that the RecipesController is part of the Rails ApplicationController and inherits general capabilities from this master controller.

The next line, hobo_model XE "hobo_model" controller, tells Rails to XE "to" use Hobo XE "Hobo" ’s controller functionality to control the Recipe model and views. It is XE "is" actually short for:

#Do not copy - although it won’t change anything if you do.

hobo_model XE "hobo_model" _controller XE "hobo_model_controller" Recipe

Hobo XE "Hobo" automatically infers the model name XE "name" from the controller name in the first line above.

Syntax Note: The pound (or “hash”) character (#) is XE "is" the symbol to XE "to" indicate a Ruby comment. Everything on a line following # will be ignored by Ruby. Code starts again on the next line. To create view template comments, where you are not in a Ruby file you must surround comments like this <!--Comment-->.

The next line, auto_actions XE "auto_actions" :all, makes all the standard actions XE "actions" available to XE "to" the controller including: index (meaning “list”), show, new, create, edit, update XE "update" , and destroy (meaning “delete”). If you are familiar with Rails, you will realize that Hobo XE "Hobo" has replaced quite a bit of Rails code in these two lines.

2.
Edit the auto_actions XE "auto_actions"

 XE "actions" . Clicking the Recipes tab in your app invokes the index action XE "action" of the Recipes controller. The index action of the controller tells Hobo XE "Hobo" to XE "to" list the records of the model. You probably noticed this as you created new records. Each time you created a new one, you probably clicked on the tab to see a list of all the records you created.

Now notice something else that you will learn to XE "to" be important. When you click on the Recipes tab, the URL that is XE "is" displayed in the URL window says:

http://localhost:3000/recipes

As you learn about the functions of the fundamental Hobo XE "Hobo" actions XE "actions" (listed in Step 1 above), you will learn that there is XE "is" a unique URL entirely specified by the action XE "action" and model name XE "name" . Look at figure earlier in this book about “Actions and Routes”, and you will see the URL for an index action is the base URL, http://localhost:3000/ concatenated with the plural XE "plural" of the model name, which in this case is recipes.

We are going to XE "to" further demonstrate that attempting to route to this URL invokes the index action XE "action" by turning off the action in Hobo XE "Hobo" and then putting turning it back on. First go to your home page by clicking the Home tab. Then, in recipes_controller.rb,

CHANGE:

class RecipesController < ApplicationController

hobo_model XE "hobo_model" _controller XE "hobo_model_controller"

auto_actions XE "auto_actions"

 XE "actions" :all

end

TO:

class RecipesController < ApplicationController

hobo_model XE "hobo_model" _controller XE "hobo_model_controller"

auto_actions XE "auto_actions"

 XE "actions" :all, :except => :index

end

The except clause in this code tells the controller to XE "to" turn off the index action XE "action" .

Refresh your browser and you should see this display:

[image: image44.png]Home : One Table - Mozilla Firefox
Ele Edt View Hstory Bookmarks Ioos Help

OB ¢ % & (0w

Most visited ¥ Getting Started (5. Latest Headines

odall@barquin com v

One Table

Welcome to One Table

Congratulations! Your Hobo Rails App is up and running
o T customise this page: adit appviews front/index.dryml

Your Recipes tab disappeared. You can also try invoking the index action XE "action" by typing http://localhost:3000/recipes into your URL window. You will get a blank page.

Hobo XE "Hobo" will no longer invoke the index action XE "action" because you told it not to XE "to" in your code. Hobo decided to do more though; it changed XE "changed" the UI XE "UI" also.

In Tutorial 3, you learned that Hobo XE "Hobo" figures out how your UI XE "UI" should look depending on your model code. There it changed XE "changed" what links were available depending on permissions you specified in the code. In this case, Hobo figures out how to XE "to" change the UI depen ding on the controller code. Here it has removed a tab, the Recipes tab, because you disallowed the action XE "action" that it would invoke. Now remove the except clause and you should get your Recipes tab back.

[Syntax Note. You are probably noticing all the colons(:) and arrows (=>). We will explain why you need these in Ruby in Chapter 7. XE "Hobo" For now, just learn where to XE "to" use them by example and put up with it.]

Now turn the index action XE "action" back on by deleting the :except clause.

class RecipesController < ApplicationController

 hobo_model XE "hobo_model" _controller XE "hobo_model_controller"
 auto_actions XE "auto_actions"

 XE "actions" :all

end

3.
Remove and restore the new and show actions XE "actions" . Hobo XE "Hobo" allows you to XE "to" edit this in two ways. You can either stipulate you want all except certain actions or that you want only specific actions. In other words, you can either indicate which actions you wish to include XE "include" or indicate which actions you wish to exclude. The former is XE "is" what you did in step three. Let’s try the latter where you declare which actions you want. The following code will do exactly what you did before but in a different way.

First, use the following code to XE "to" include XE "include" all seven actions XE "actions" , including the index action XE "action" . This code is XE "is" equivalent to the auto_actions XE "auto_actions" :all statement above.

class RecipesController < ApplicationController

hobo_model XE "hobo_model" _controller XE "hobo_model_controller"

auto_actions XE "auto_actions"

 XE "actions" :index, :show, :new, :create, :edit, :update XE "update" , :destroy
end

Try removing the index action XE "action" . When you save your code and refresh your browser, you will obtain the same result using the :except => index code. Now put back the index action and try removing the :new option.

class RecipesController < ApplicationController

hobo_model XE "hobo_model" _controller XE "hobo_model_controller"

auto_actions XE "auto_actions"

 XE "actions" :index, :show, :create, :edit, :update XE "update" , :destroy

end

The result is XE "is" that the New Recipe link to XE "to" http://localhost:3000/recipes/new, the URL associated with the new action XE "action" disappears. This is because you have disallowed the new action and Hobo XE "Hobo" takes care of cleaning up your UI XE "UI" for you. Even if you try to go to that URL by typing http://localhost:3000/recipes/new into the browser, Hobo tells you that you can no longer go there.

[image: image45.png]: One Table - Mozilla Firefox.

Vew Hgtory Bookmerks Tooks Help

O - ¢ % o (Oleiecrommrmsmen %] [l seede

tost Visited ¥ Getting Started (3. Latest Headines

odall@barquin com v

One Table

Home. I Recipes.

The page you were looking for could not be found

Put the :new action XE "action" back in and click the Recipes tab. Mouse over the Recipe links and note that the URL’s look like, http://localhost:3000/recipes/2-omelette which are of the form XE "form" http://localhost:3000/model(plural XE "plural")/ID-model_name XE "name"

 XE "model_name" _variable which is XE "is" the form that we discussed earlier in this tutoral for the show action.

Note: Hobo XE "Hobo" assigns a name XE "name" variable to XE "to" the model equal to the value of the field it thinks is XE "is" the most likely summary field. Hobo first looks for a field called name. Next it looks for the next most likely, which in this case it guesses is title. You can override the automatic name assignment by adding the option “:name = > true” to the field you would like displayed as the “name”.

[image: image46.png]Leontactrb*

~class Contact < ActiveRecard:

ase

hobo_rmadel # Don't put anything above this

- fields do
last_narme :string, (name => true
first_name :tring
notes :text
timestamps
end

Permissions

Figure 51: Setting the Hobo XE "Hobo" "name XE "name" " attribute XE "attribute" for a model

You can also use a little “Hobo XE "Hobo" magic” to XE "to" create your own version of name XE "name" using a Ruby method XE "method" as below:

[image: image47.png]~class Contact < ActiveRecard:

ase
hobo_rmadel # Don't put anything above this

- fields do
last_narme :string
first_name :tring
notes :text
timestamps
end

- def name
P

- if first_name t= nil
s=s + first_name
end

- if last_name nil
=540 "+ last_name]
end
return s
end

Figure 52: Creating you own custom "name XE "name" " attribute XE "attribute"
Now, back to XE "to" our original train of thought…Remove the :show action XE "action" .

class RecipesController < ApplicationController

hobo_model XE "hobo_model" _controller XE "hobo_model_controller"

auto_actions XE "auto_actions"

 XE "actions" :index, :new, :create, :edit, :update XE "update" , :destroy

end

Now when you refresh your browser you will note that you no longer have links to XE "to" show(display) the details of a particular Recipe record. Even if you try to navigate your browser to http://localhost:3000/recipes/2-omelette, you will get an error.

Now let’s try one more but using the except version of auto_actions XE "auto_actions" again but first make sure you are back to XE "to" the all actions XE "actions" state XE "state" . Use the code below.

class RecipesController < ApplicationController

hobo_model XE "hobo_model" _controller XE "hobo_model_controller"

auto_actions XE "auto_actions"

 XE "actions" :all

end

Navigate to XE "to" the Recipes link where you should now see a list of hyperlinks to each recipe. Click on a recipe.

[image: image48]
Observe the Edit Recipe link on the right hand side of the display. Click or mouse over it too convince yourself that the URL associated with this link is XE "is" :

 http://localhost:3000/recipes/6-hamburger/edit.

This is XE "is" just the result for you would expect for the edit action XE "action" of the form XE "form" :

 http://localhost:3000/model(plural XE "plural")/ID-model_name XE "name"

 XE "model_name" _variable/edit.

Now make sure you are on the screen above, a particular Recipe. Edit your code to XE "to" remove the edit action XE "action" .

class RecipesController < ApplicationController

hobo_model XE "hobo_model" _controller XE "hobo_model_controller"

auto_actions XE "auto_actions"

 XE "actions" :all, :except => :edit

end

Now you should see that Hobo XE "Hobo" removes the links to XE "to" the edit action XE "action" and even if you try to force XE "force" Hobo to go to the above URL, it will not, giving you an error:

[image: image49.png]Action Controller: Exception caught - Mozilla Firefox
Ele Edt View Hstory Bookmarks Ioos Help

O - C % o (O i o

(] Most visited ¥ Getting Started (3. Latest Headines.

Unknown action

Mo action responded to 3-hamburger. Actions: access_denied, authenticated_user_from_cookie, authorized?, create, create_auth_cookie, destroy,
index, login_from_cookie, login_required, model, redirect_back_or_default, show, store_location, and update

P nann oI 70 v M TN s NIl 20l

4. Remove multiple actions XE "actions" . So far we have showed you how to XE "to" remove one action XE "action" at a time. You can use the two methods we have showed you to remove two or more actions at a time. If you use the listing approach and you are starting with all the actions as in:

class RecipesController < ApplicationController

 hobo_model XE "hobo_model" _controller XE "hobo_model_controller"
 auto_actions XE "auto_actions"

 XE "actions" :index, :show, :new, :create, :edit, :update XE "update" , :destroy

end

If you want to XE "to" remove both the new and the create actions XE "actions" , just delete them from your list so that you have:

class RecipesController < ApplicationController

hobo_model XE "hobo_model" _controller XE "hobo_model_controller"

auto_actions XE "auto_actions"

 XE "actions" :index, :show, :edit, :update XE "update" , :destroy

end

If you start be specifying all actions XE "actions" and use the except clause, the equivalent code to XE "to" the above will be:

class RecipesController < ApplicationController

hobo_model XE "hobo_model" _controller XE "hobo_model_controller"

auto_actions XE "auto_actions"

 XE "actions" :all, :except => [:new, :create]

end

Note. When removing the New action, this actually adds a
'New' facility below the list of Recipies. When you remove the :show action, Hobo places an 'Edit' link against each listed item.

Syntax Note. You may be wondering why the except approach encloses the list of actions XE "actions" in square brackets and the listing approach does not. [The Ruby :except method XE "method" takes a Ruby array as an input and Ruby arrays are enclosed in square brackets. However the auto_action XE "action" . . .]

5.
Using controller short cuts. There is XE "is" one other way to XE "to" add or remove controller actions XE "actions" and that is through the use of short cuts. The code:

auto_actions XE "auto_actions"

 XE "actions" :read_only

is XE "is" the same as:

auto_actions XE "auto_actions"

 XE "actions" :index, :show

The code:

auto_actions XE "auto_actions"

 XE "actions" :write_only

is XE "is" the same as:

auto_actions XE "auto_actions"

 XE "actions" :create, :update XE "update" , :destroy

Syntax Note. You can append actions XE "actions" or use the except actions clause with either of these short cuts. The proviso is XE "is" that you must use the shortcut first and [use only one] and use the except clause last.

6. Hobo XE "Hobo" Controller action XE "action" summary. Below is XE "is" a list of all controller actions XE "actions"

	Action
	Summary Meaning
	URL Mapping
	Example

(model - recipe)

	index
	display list of records
	/base/model(plural) XE "plural"
	/base/recipes

	show
	display a single record XE "display a single record"
	/base/model(plural) XE "plural" /ID-name
	/base/recipes/2-omelette

	New
	allocate memory for a new record and open a form XE "form" to XE "to" hold it.
	/base/model(plural) XE "plural" /ID-name
	/base/recipes/new

	create
	save the new record.
	link without landing
	/base/recipes

	Edit
	retrieve a record from the database and display it in a form XE "form"
	/base/model(plural) XE "plural" /ID-name/edit
	/base/recipes

	update XE "update"
	save the contents of an edited record
	lands on show
	/base/recipes

	destroy
	delete the record
	lands on index
	/base/recipes

Figure 55: Hobo XE "Hobo" Controller action XE "action" summary

Tutorial 6 – Editing the Navigation Tabs XE "Editing the Navigation Tabs"

 XE "Navigation Tabs"
This tutorial provides an introduction to XE "to" Hobo XE "Hobo" ’s automatically generated tags. We will show you where to find them and how to make a simple edit to change how navigation tabs are displayed. We will dive deeply into this type of view editing in Chapter 4.

Topics

· Locate Rapid directories
· Edit the navigation tab
Steps

1.
Find Hobo XE "Hobo" ’s auto-generated XE "auto-generated" tags. Open up the views directory and navigate to XE "to" the rapid directory by following this tree: views/taglibs XE "taglibs" /auto/rapid. You will see three files called: pages.dryml XE "pages.dryml" , forms.dryml, and cards.dryml XE "cards.dryml" . It is XE "is" here that Hobo keeps its default definition of the tags its uses to generate view templates.

2.
Open the pages.dryml XE "pages.dryml" . file. Take a quick look through this file and you will see tag definitions such as:

<def tag="main-nav"> . . .

<def tag="index-page" for="Recipe">

<def tag="new-page" for="Recipe">

<def tag="show-page" for="Recipe">

<def tag="edit-page" for="Recipe">

Notice how, except for the <main-nav> tag these correspond to XE "to" the actions XE "actions" of Hobo XE "Hobo" Controller action XE "action" summary above in Tutorial 5. You will further note that these are just the actions that require a view (remember index means list). The other actions, create, update XE "update" , and destroy only needed a hyperlink. We are only mentioning this now to pique your curiosity for Chapter 4 where you will delve deeply into Hobo’s way of creating and editing view templates.

3.
Edit the <main-nav> tag. Copy the following code and paste it into your views/taglibs XE "taglibs" /application.dryml XE "application.dryml" file. Hobo XE "Hobo" automatically uses code in this file instead of what it finds in pages.dryml XE "pages.dryml" . In other words, application.dryml overrides pages.dryml and further makes it available to XE "to" the entire application.

<def tag="main-nav">

<navigation class="main-nav" merge-attrs XE "merge-attrs" >

<nav-item href="#{base_url}/">Home</nav-item>

<nav-item with="&Recipe">Recipes</nav-item>

</navigation>

</def>

5.
Rename a Navigation Tab. By convention, Hobo XE "Hobo" names tabs, other than the Home tab with the plural XE "plural" of the model name XE "name" . In this case, that is XE "is" ‘Recipes’ Let’s try renaming this to XE "to" ‘My Recipes’. Just chain the content XE "content" of the Recipe tab to ‘My Recipes’. Now your code should look like this:

<def tag="main-nav">

<navigation class="main-nav" merge-attrs XE "merge-attrs" >

<nav-item href="#{base_url}/">Home</nav-item>

<nav-item with="&Recipe">My Recipes</nav-item>

</navigation>

</def>

Refresh your browser and you will see a renamed tab:

[image: image50.png]odall@barquin com v

One Table

My Recipes

Welcome to One Table

Congratulations! Your Hobo Rails App is up and running
o T customise this page: adit appviews front/index.dryml

Wt sgns i S AN G N D e o BTNl i

.

6. Remove the Home Tab. Instead of deleting the Home tab, just comment it out by surround it with <!-- ...-->.

Programming Note. Since view files are essentially HTML XE "HTML" and not Ruby code, you use the HTML commenting syntax instead of the Ruby comment syntax.

<def tag="main-nav">

<navigation class="main-nav" merge-attrs XE "merge-attrs" >

<!--<nav-item href="#{base_url}/">Home</nav-item>-->

<nav-item with="&Recipe">My Recipes</nav-item>

</navigation>

</def>

Now refresh your browser and you will see the Home tab has been removed:

[image: image51.png]odall@barguincom v

One Table

My Recipes o I

Welcome to One Table

Congratulations! Your Hobo Rails App is up and running
o T customise this page: adit appviews front/index.dryml

a AN NI s i s p N

7.
Reset the tabs. Since editing the application.dryml XE "application.dryml" file will interfere with future tutorials, delete the code you copied above.

<def tag="main-nav">

<navigation class="main-nav" merge-attrs XE "merge-attrs" >

<!--<nav-item href="#{base_url}/">Home</nav-item>-->

<nav-item with="&Recipe">My Recipes</nav-item>

</navigation>

</def>

Tutorial 7 – Model Relationships XE "Model Relationships" I

You will learn how to XE "to" create a new model that is XE "is" related to another table. You will replace one of your table’s original fields with a key that is linked to a foreign key in order XE "order" to select values. You will see how Hobo XE "Hobo" automatically creates a drop-down XE "drop-down" control to select values that you have entered.

You will also make some controller action XE "action" edits [and some permissions changes] to XE "to" refine the user interface.
More specifically, you will add a new model to XE "to" hold the names of countries that a user will select from the New Recipe page. The application will identify the foreign key for that country and place it in the recipes table.
Steps

Copy the Application. If you would like to XE "to" preserve your application in its state XE "state" as of the end of Tutorial 6, you may wish to copy it the application and work on the new version. Go ahead and copy the entire application directory and paste it into a folder called two_table in your tutorials directory. Next, remove the piece we added to application.dryml XE "application.dryml" , and change the app-name tag definition to “Two Table” from “One Table”

[image: image52.png]application. drym! - SciTE
Fie Edt
T applcaton.drym

Search View Options Language Buffers _Help

<include sre="rapid" plugin="hobo"/>

<include sre="taglibs/auto/rapid/cards"/> Change this
<include sre="taglibs/auto/rapid/pages’/>
<include sre="taglibs/auto/rapid/forms"/;

Remove thi

<set-theme name="clean’/>
<def tag="app-name">One Table</def>

<def tag="main-nav">
<navigation class="main-nav" merge-attrs>
<nav-item href="#{base_url}/">Home</nav-item>
<nav-item with="aRecipe">My Recipes</nav-iterm>
</navigations
</def>

Next shut down the web server by issuing a <control-c> in the command window where you issued the ruby script/server XE "ruby script/server" command.

Restart the web server and you are ready to XE "to" go.

two_table> ruby script/server XE "ruby script/server"

2.
Add drop down control for preset selections. This tutorial is XE "is" about adding associations XE "associations" between tables. In subsequent steps, we are going to XE "to" show you how to create a new Countries table to store the values of country names to associate with your recipes. Hobo XE "Hobo" will take care of the user interface rendering, as you will soon see.

Before we do that though, let’s demonstrate the simpler approach. This is XE "is" the easy way to XE "to" go for applications when you know at design time all the possible values of a category. In this case, you would not need to add the additional complexity of creating a table to maintain all values for countries. All that is needed is to specify in the model the list of possible values using the enum_string XE "enum_string" attribute XE "attribute" of a field. In this tutorial let’s assume the only values for country will be: American, French & Chinese.

Your recipe.rb model code should now look like:

class Recipe < ActiveRecord::Base

 hobo_model XE "hobo_model" # Don't put anything above this

 fields do

 title :string

 body XE "body" :text

 #country :string

 country enum_string XE "enum_string" (:American, :French, :Chinese)

 timestamps XE "timestamps"
 end

We have used the enum_string XE "enum_string" field method XE "method" to XE "to" declare the possible values for country. So we can easily see what we have done, we have commented out the old version of the country field declaration by preceding it with a ‘#’ (hash). Now refresh your browser and click ‘New Recipe’ and you will see a drop-down XE "drop-down" control that lets you select values for country.

[image: image53.png]admin@barguin com Loggedinas Admin Account Log out

One Table

Home || MyRecipes

New Recipe

Titte [

Body

Emtyy

This is XE "is" fine as along as you don’t have to XE "to" change the possible values. In the next steps, we will show you how to create a new table to store country values and be able to edit it on the fly and have it be reflected in your GUI XE "GUI" . You will not have to write any queries. Hobo XE "Hobo" will take care of everything for you.

3.
Remove drop down control. First let’s get back to XE "to" where we started before adding a new table. Edit your code to look like this.

class Recipe < ActiveRecord::Base

 hobo_model XE "hobo_model" # Don't put anything above this

 fields do

 title :string

 body XE "body" :text

 country :string

 #country enum_string XE "enum_string" (:American, :French, :Chinese)

 timestamps XE "timestamps"
 end

The drop-down XE "drop-down" control will now be gone when you refresh your browser.

4.
Creating model associations XE "associations" . In the next several steps, we will add a Country model, set up a relationship between the Country model and the recipe model and then run a Hobo XE "Hobo" migration XE "migration" to XE "to" create the Countries table. This last step will also set up the foreign key in the Recipe model that will maintain the association to the index of the new Country model, country_id.

When you look in the db/schema file to XE "to" review the fields in your tables, you will not see the ID’s of any table listed but they are there. Every time you create a table using a migration XE "migration" in Hobo XE "Hobo" , it will also create the table index with a name XE "name" defined by convention to be the model name with ‘_ID’ appended.

5.
Add a new model. Using Hobo XE "Hobo" ’s model_resource generator create a new model with one field to XE "to" store a country’s name XE "name" . If you do not have a command prompt window open besides the window you used to start your web server, open a new one now and navigate to the root of the application.

two_table>

Execute the following command from your command prompt.

two_table> ruby script/generate XE "ruby script/generate" hobo_model XE "hobo_model" _resource XE "hobo_model_resource" country name XE "name" : XE "name:" string

Check the models directory and you should see a country.rb file with the following contents defining the Country name XE "name" field.

class Country < ActiveRecord::Base

 hobo_model XE "hobo_model" # Don't put anything above this

 fields do

 name XE "name" :string

 timestamps XE "timestamps"
 end

If you look in the db/schema file, however, you will not see a countries table because you have not run the migration XE "migration" yet. Let’s define our relationships now.

The hobo_model XE "hobo_model" _resource XE "hobo_model_resource" generator also created some other directories and files. It created a controller file called countries_controller.rb and a view template directory called views\countries. Note that the class names (how Hobo XE "Hobo" refers to XE "to" them) are CountriesController for the controller and Country for the model which you can see in the first line of code in the respective files.

Naming Convention Note: The controller has a file and class name XE "name" that is XE "is" the plural XE "plural" of the model name. The file names use underscores in the file names and removes them for class names.

6.
Remove a field. In preparation for setting up a relationship between the Recipe and Country models, you must delete the country field. in the Recipe model. It will not be needed any more since it is XE "is" replaced by the name XE "name" field in the Country model.

Open the recipe.rb model file and delete the country field from the fields…do block at the beginning of the file. So you can see what you have done, it would easiest to XE "to" comment it out. Change this:

fields do

 title :string

 body XE "body" :text

 #country :string

 timestamps XE "timestamps"
 end

7. Add a belongs_to XE "belongs_to" relationship. The Recipe model will have what is XE "is" called a belongs_to XE "to" relationship with the new Country model. This relationship or association requires that tor every recipe there will be, at most, one country that it is associated with. Add the belongs_to declaration just before the #permissions comment.

Class Recipe < ActiveRecord::Base

 hobo_model XE "hobo_model" # Don't put anything above this

 fields do

 title :string

 body XE "body" :text

 #country :string

 timestamps XE "timestamps"
 end

 belongs_to XE "belongs_to" :country

Programming Note. It is XE "is" useful to XE "to" read belongs_to XE "belongs_to" as ‘refers to’ to remind your self that when this relationship is declared, it causes the creation of a key field named country_id in the recipes table to “refer to” the Country record which contains the name XE "name" field.

Syntax Note: In the above belongs_to XE "belongs_to" statement, :country is XE "is" the name XE "name" of a relationship. It is not the name of a field. Through its naming conventions, Hobo XE "Hobo" determines that the model to XE "to" relate to is named Country. For the case when naming conventions fail, you can force XE "force" the relationship as in the following code:

 belongs_to XE "belongs_to" :country, :class_name XE "name" =>"Some_other_model"

When you learn to XE "to" do more sophisticated programming, this feature of naming relationships, which Hobo XE "Hobo" inherits from Rails, will become a powerful tool. Unlike standard relational database relationships, this capability essentially adds meaning to the relationship.

8.
Run the Hobo XE "Hobo" migration XE "migration" . Now you have done everything needed for Hobo’s intelligence to XE "to" take over and create the new countries table and set up the proper foreign keys.

Now, go to XE "to" your command prompt and run the Hobo XE "Hobo" migration XE "migration" . By doing this you will allow Hobo to accomplish several things. Hobo will: (1) create the migration file for the new table, countries, (2) remove the country field from the recipes table, and (3) set up a foreign key to handle the relationship between Recipe and Country, and (4) execute the migration to create the new database table, Countries. For every recipe record with a country entered, there will now be a country_id value written in the recipes table that corresponds to a country_id on a country record.

two_table> ruby script/generate XE "ruby script/generate" hobo_migration XE "hobo_migration"

 XE "migration"
You will get the following response:

DROP or RENAME?: column recipes.country

Rename choices: country_id

Enter either 'drop country' or one of the rename choices:

Hobo XE "Hobo" has noticed that there is XE "is" an ambiguity you have created that needs to XE "to" be resolved. There is both a country field and a Country model. It knows you need a foreign key, country_id, to relate to the Countries table. So it gives you a choice to rename country to country_id or drop the country field and create a new country_id field. Since country has real country names in it, not foreign key integer values, it is best to drop it and let Hobo create a new field for the foreign key.

Enter ‘drop country’ (without quotation marks) in response.

Next the migration XE "migration" will respond as follows:

What now: [g]enerate migration XE "migration" , generate and [m]igrate now or [c]ancel?

You should type ‘m’.

Last it will ask you what to XE "to" name XE "name" the migration XE "migration" file.

Filename [hobo_migration XE "hobo_migration"

 XE "migration" _3]:

Just hit the ‘enter’ key and it will take the default name XE "name" , hobo_migration XE "hobo_migration"

 XE "migration" _3.
10. Review the results of your migration XE "migration" . Let’s take a look at the database schema XE "database schema" in db\schema.rb.

ActiveRecord::Schema.define(:version => 20090126175540) do

 create_table "countries", :force XE "force" => true do |t|

 t.string "name XE "name" "

 t.datetime "created_at"

 t.datetime "updated_at"

 end

 create_table "recipes", :force XE "force" => true do |t|

 t.string "title"

 t.text "body XE "body" "

 t.datetime "created_at"

 t.datetime "updated_at"

 t.integer "country_id"

 end

 create_table "users", :force XE "force" => true do |t|

 t.string "crypted_password", :limit XE "limit" => 40

 t.string "salt", :limit XE "limit" => 40

 t.string "remember_token"

 t.datetime "remember_token_expires_at"

 t.string "name XE "name" "

 t.string "email_address"

 t.boolean "administrator", :default => false

 t.datetime "created_at"

 t.datetime "updated_at"

 t.string "state XE "state" ", :default => "active"

 t.datetime "key_timestamp"

 end

end

10.
Double-check the tab code before refreshing your browser. Back in Tutorial 6 #7, we asked you to XE "to" delete the <navigation> tag. Go back there and make sure you completed that step before refreshing your browser. You should see a new tab for Countries.

11.
Review a few features of the GUI XE "GUI" . Make sure you are signed in as the admin. Go to XE "to" the Countries tab and click through to enter a few countries.

[image: image54.png]acmin@barguin.com V] R

Countries

There are 3 Countries

New Country

American

French

Chinese

el Al A B QN sl sl sl i,

Then go to XE "to" the Recipes tab and click through to edit one of your recipes. You should now see a drop down box just you saw when you used the enum option for your attribute XE "attribute" .
[image: image55.png]Ble Edt Yew

Htory Booknarks Tools Help

O - c @ (O oo

(] Most visited ¥ Getting Started 5. Latest Headines

7

admin@barguin com ¥

s

Countries

Recipes.
Edit Recipe
Title Omelet ‘
Body 3 cone
cheadar cheese
buscer
Country
American
French m
French or cance

The difference is XE "is" that you are now actually selecting a country_id foreign key behind the scenes. Hobo XE "Hobo" takes care of querying the countries table (Country model) and displaying the actual country names. When you save this Recipe record, Hobo maintains all of the necessary related keys automatically.

After you do the save, note that the Country value in the page is XE "is" an active hyperlink:

. [image: image56.png]Recipe : Two Table - Mozilla Firefox

Ele Edt View Hstory Bookmarks Ioos Help

O - ¢ X 6 (Ol

Most visited £ Getting Started [(51] Latest Headines

Two Table

Home || Countries || Recipes

admin@barguin com ¥

Omelet

3 ezes
cheddar cheese
butter

Country American

Edit Recipe.

hitpi{locahost; 3000 countries/1-american

| s3rox|

If you click it, you will see a screen that allows you to XE "to" edit the Country record.

[image: image57]
You can edit a country record because you are logged in as the “administrator”. If you check the countries.rb file, you will see that the permission to XE "to" edit the Country field is XE "is" limited to the administrator. This means that if you log in as a regular user, Hobo XE "Hobo" should not allow the edit. Log out from the administrator account XE "account" and login as regular user.

class Country < ActiveRecord::Base

. . .

 # --- Permissions XE "Permissions" --- #

 def create_permitted? XE "create_permitted?"
 acting_user XE "acting_user" .administrator?

 end

 def update XE "update" _permitted? XE "update_permitted?"
 acting_user XE "acting_user" .administrator?

 end

. . .

Now go to XE "to" the Recipes tab, click on a recipe link and edit the recipe. Next click on the country name XE "name" on the page. Now you see that the Edit Country link is XE "is" no longer available.

[image: image58.png]Country : Two Table - Mozilla Firefox
Ele Edt View Hstory Bookmarks Ioos Help

O - ¢ X & ([Olewimcrmomamonon

Most visited ¥ Getting Started (5. Latest Headines

Two Table

Home || Countries || Recipes
| |

odall@barquin com v

American

12.
One-to-many relationship discussion. The relationship or association that you have just implemented is XE "is" known as a one-to-many relationship. In this particular situation, we have an individual country that is related to XE "to" many recipes. More specifically, there is one record in the Countries table with the name XE "name" ‘American,’ but potentially many American recipes.

Tutorial 8 – Model Relationships XE "Model Relationships" II

You will learn to XE "to" implement many-to-many relationships. These relationships are useful, for example, in categorizing a model’s records. You will implement the relationship using the has_many XE "has_many" , has_many :through, and belongs_to XE "belongs_to" relationship declarations XE "relationship declarations" of Rails. You will learn how Hobo XE "Hobo" establishes a direct relationship between model relationships and the features of the GUI XE "GUI" .

In terms of our tutorial application, you will be adding recipe categories so that you can categorize recipes as, for example sweet, sour, or hot. You will implement an architecture where it is XE "is" easy to XE "to" invert the relationships so that you can display both which categories a recipe belongs to and which recipes are classified in a particular category.

PREREQUISITES: Tutorials 1-6.

Topics

· Many-to-many relationships XE "Many-to-many relationships"
· Using the has_many XE "has_many" , has_many :through, and belongs_to XE "belongs_to" rails relationship declarations XE "relationship declarations"
· Fixing a UI XE "UI" assumption by Hobo XE "Hobo" when it is XE "is" not the optimum.
Steps

1.
Copy the Application. Just like you did in Tutorial 7, we suggest you copy your application from Tutorial 7 in order XE "order" to XE "to" easily go back to its state XE "state" at the end of that tutorial. Shut down the web server by issuing a ‘<ctl> c’ in the command window where you issued the ruby script/server XE "ruby script/server" command.

Then, do a copy in whatever operating system you are using. We have called the new application directory ‘four_table’. Navigate to XE "to" the new directory. Restart the web server and you are ready to go.

four_table> ruby script/server XE "ruby script/server"

You may wish to XE "to" change the name XE "name" of your application as displayed in the UI XE "UI" . Go to views/taglibs XE "taglibs" /application.dryml XE "application.dryml" . Change the code <app-name> tag to read:

<def tag="app-name">Four Table</def>

Now refresh your browser and you will see the new name XE "name" .

1. Create XE "Create" the models. We are going to XE "to" add two new models to our our original application and keep the original Recipe and Country models. The first will be a Category model and the second will be a CategoryAssignment model.

CategoryAssignment will have the two fields, category_id and recipe_id that correspond to XE "to" keys of the same name XE "name" in the Category and Recipe models.
Programming Note. If you review the schema in the app/db directory, you will not see these fields listed in the Categories and Recipes table. They are the default keys for these tables. Rails does not list them.

As you will see shortly, you do not have to XE "to" worry about creating or naming any of these fields, the Hobo XE "Hobo" generators will take care of it all for you.

Go to XE "to" your command prompt and issue the following commands.
four_table> ruby script/generate XE "ruby script/generate" hobo_model XE "hobo_model" _resource XE "hobo_model_resource" category name XE "name" : XE "name:" string

four_table> ruby script/generate XE "ruby script/generate" hobo_model XE "hobo_model" category_assignment

The first command will create both a controller and model, Category being the name XE "name" of the model. The second will create a CategoryAssignment model but no controller.

[diagram of many-to-many relationship]

When you implement the relationships below, you will see that CategoryAssignment sits in between the Recipe and Category models. You do not need a CategoryAssignments controller because you will be accessing recipes and categories through these models directly and need no actions XE "actions" that pull data directly from the intermediary CategoryAssignment model.

3.
Add relationships to XE "to" your models. Edit the models as shown below to enter model relationships.

Programming Note. Hobo XE "Hobo" migrations XE "migrations" rely on both the field declarations in your models AND the relationship declarations XE "relationship declarations" . The relationship declarations allows Hobo to XE "to" setup all the necessary keys to implement real model relationships.

recipe.rb -----

class Recipe < ActiveRecord::Base

 hobo_model XE "hobo_model" # Don't put anything above this

 fields do

 title :string

 body XE "body" :text

 #country :string

 timestamps XE "timestamps"
 end

 has_many XE "has_many" :categories, :through => :category_assignments, :accessible => true

 has_many XE "has_many" :category_assignments, :dependent => :destroy

 belongs_to XE "belongs_to" :country

category.rb -----

class Category < ActiveRecord::Base

 hobo_model XE "hobo_model" # Don't put anything above this

 fields do

 name XE "name" :string

 timestamps XE "timestamps"
 end

 has_many XE "has_many" :recipes, :through => :category_assignments

 has_many XE "has_many" :category_assignments, :dependent => :destroy

category_assignment.rb -----

class CategoryAssignment < ActiveRecord::Base

 hobo_model XE "hobo_model" # Don't put anything above this

 fields do

 timestamps XE "timestamps"
 end

 belongs_to XE "belongs_to" :category

 belongs_to XE "belongs_to" :recipe

4.
Discussion of model relationships. Note above that you used the has_many XE "has_many" and the belongs_to XE "belongs_to" relationships. You further used a has_many relationship with a :through option.

Let’s start with the belongs_to XE "belongs_to" relationship which we used in Tutorial 7 and declared in the CategoryAssignment model above.

Recall that when you see belongs_to XE "belongs_to" , think refers to XE "to" , and you will understand that these declarations cause the category_id and recipe_id fields to be placed in the category_assignments table.

The has_many XE "has_many" :through statements instructs Hobo XE "Hobo" /Rails to XE "to" setup the necessary functions to access a category from a recipe or a recipe from a category. The vanilla has_many statements set up the one to many relationships between the recipes table and the category_assignments tables and between the categories and category_assignments tables.

The :dependent => destroy option makes sure that when either a recipe or category is XE "is" deleted that the corresponding records in the category_assignments table are removed automatically too.

5.
Run the hobo migration XE "migration" . Go to XE "to" your command prompt and run the following.

four_table> ruby script/generate XE "ruby script/generate" hobo_migration XE "hobo_migration"

 XE "migration"
Remember to XE "to" respond ‘m’ when prompted for migration XE "migration" and just ‘return’ when prompted with the migration file name XE "name" .

Programming Note. At this point, if your web server is XE "is" still running from earlier tutorials, you need to XE "to" terminate it and restart it. Rails and Hobo XE "Hobo" will not recognize a new database table without doing so.

four_table> ruby script/server XE "ruby script/server"
6.
Populate the new table. Open up your browser to XE "to" http://localhost:3000/ and you should see the following:

[image: image59.png]Guest v

Four Table

Categories || Countries || Recipes

Welcome to Four Table

Congratulations! Your Hobo Rails App is up and running
o T customise this page: adit appviews front/index.dryml

Now go to XE "to" the new Categories tab and enter in some food categories:

[image: image60.png]e e lod Loggedinas Admin Account Logout

Four Table

Categories | [MEITIGES

Categories
There are 3 Categories
New Category

Sweet
0 Category Assignments

sour
0 Category Assignments

hot
0 Category Assignments

7.
Adding new records to XE "to" the relationships. Go to the Recipes tab. Click on one of the recipes and you should get this.

[image: image61.png]admin@barquin.com Loggedinas Admin Account Logout

Four Table

Home || Categories [| Countri

Omelet Edit Recipe

3 ezas
cheddar cheese
butter

Country American

Category Assignments

No category assignments to display.

Notice there is XE "is" no category assignment.

Then click Edit Recipe on the right.

[image: image62.png]‘admin@barguin.com ¥ L ETE T ST

Four Table

Home

Categories || Countrie:

Edit Recipe
Title Omelet]
Body 3 cags
cheddar cheese
butter
Categories =
Add Categary v

Now you can see a new drop-down XE "drop-down" box that lets you add categories to XE "to" your recipe. Hobo XE "Hobo" has taken care of this for you by inferring that you need it from your model relationship declarations XE "relationship declarations" .

Philosophy Note. Here is XE "is" a good example of the DRY XE "DRY" (Don’t Repeat Yourself) notion playing out. If the necessary UI XE "UI" controls XE "controls" can be directly inferred from model structure, there should be no need to XE "to" directly code it yourself. You may wish to use a different control but Hobo XE "Hobo" picks a reasonable one for you so you do not have to bother unless you want to.

Take a look at the URL that activated the page. You will see that the URL is XE "is" of the form XE "form" for a “controller edit” action XE "action" . If you need to XE "to" remind yourself of the form look at the Hobo XE "Hobo" Controller Action Summary figure in Tutorial 5 step 6.

Try adding a couple of categories and save the changes.

[image: image63.png](NG el Loggedinas Admin Account Logout

Four Table

Home || Categorie:

Edit Recipe
Title Omelet]
Body 3 cags
cheddar cheese
butter
Categories
*
Add Cateqory v |
Country

Here, on the Edit Recipe screen, you can see that Hobo XE "Hobo" is XE "is" displaying the entries for the Recipe categories you have chosen to XE "to" associate with the recipe, namely hot and sour. So far, Hobo is doing just what we would expect.

8.
Display the associations XE "associations" . After you save the recipe record with its associations you should obtain something like the screen pictured below. This is XE "is" not really what you want. You would probably prefer to XE "to" see Category 1 and Category 2 explicitly shown. Hobo XE "Hobo" tries to guess which table’s values to display but, in this case, it has not chosen the ones that you prefer.

It is XE "is" showing the index numeric value instead of the Category name XE "name" .

[image: image64.png]admin@barguin.com Loggedin as Admin Account Logout

Four Table

Home || Categories

Omelet Edit Recipe

£
cheddar cheese
butter

Country American

Category Assignments

Category Assignment 1

Category Assignment 2

In Chapter 4 you will learn the fancy ways to XE "to" deal with this problem by editing the auto-generated XE "auto-generated" tags in the Rapid directories. Luckily there is XE "is" a much easier way to deal with this problem using Hobo XE "Hobo" ViewHints XE "ViewHints" .

Go to XE "to" the app/viewhints/recipe directory.

Enter the code (in bold italics below) to XE "to" tell Hobo XE "Hobo" explicitly to use categories as the child of recipes in its displays.

class RecipeHints < Hobo XE "Hobo" ::ViewHints XE "ViewHints"
 children XE "children" :categories
end

Now refresh your browser.

[image: image65.png]admin@barquin.com WL IR LT s

Four Table

Home || Categories [| Countri

Omelet Edit Recipe

3 ezas
cheddar cheese
butter

Country American

Categories

hot
1 Category Assiznment

sour
1 Category Assiznment

Now instead of generic values, Category Assignment 1 and Category Assignment 2, you get the actual categories, hot and sour.

If you wish to XE "to" see all the recipes which are ‘hot’, you would click on ‘hot’ to check this out; or you could go to ‘Categories’ and then click on ‘hot’.

[image: image66.png]admin@barguin com v

Four Table

Home || Categories || Countries [Recipes

hot Edit Category

Category Assignments

Category Assignment 1

Either way you get a non-specific Category Assignment.

Now let’s fix this in the same way as we fixed the categories belonging to XE "to" a specific recipe.

Go to XE "to" the app/viewhints/category directory.

Enter the code (in italics and bold below) to XE "to" tell Hobo XE "Hobo" explicitly to use recipes as the child of categories in its displays.

class CategoryHints < Hobo XE "Hobo" ::ViewHints XE "ViewHints"
 children XE "children" :recipes
end

Refresh your browser.

[image: image67.png]admin@barguin.com v

Four Table

Home || Categories || Countries [Recipes

hot Edit Category

Recipes

Omelet
2 Categories

Now it is XE "is" all fixed.

9.
Comments on the many-to-many relationship. Now let’s review how you got this all to XE "to" work. The end product is XE "is" that you can see the categories associated with each recipe and the recipes associated with each category.

In each case you can click through to XE "to" look at individual categories or recipes and edit them if you wish.

All of this is XE "is" a result of having a recipe model related to XE "to" a category_assignment model which is in turn related to a category model and vice versa. We will call the category_assignment model the intermediary model and the other two, outer models.

You have created a symmetrical set of model relationships where the two outer models have has_many XE "has_many" relationships with the intermediary model and has_many :through relationships XE "has_many :through relationships" with each other. Conversely, the intermediary model has a belongs_to XE "belongs_to" relationship with each of the outer models.

[image: image68]
This structure will be used frequently in most data-rich applications. It is XE "is" worth noting how you need only a few lines of code to XE "to" implement this structure and how it lets you access each outer model from the other.

CHAPTER 4 – INTERMEDIATE TUTORIALS

Introductory Concepts and Comments
Auto-Generated Tag" Tutorial 9 - Editing Auto-Generated Tags
 XE "Editing Auto-Generated Tags"
DRYML" Tutorial 10 - DRYML I - Making Your Own Tags
 XE "Making Your Own Tags"
DRYML" Tutorial 11 - DRYML II - Creating Tags from Tags
 XE "Creating Tags from Tags"
Tutorial 12 - Listing Data with the Index Tag XE "Listing Data with the Index Tag"
Tutorial 13 - Listing Data in Table Form XE "Listing Data in Table Form"
Show Page" Tutorial 14 - Working with the Show Page Tag
 XE "Working with the Show Page Tag"

 XE "Show Page Tag"

Tutorial 15 - New and Edit Page XE "Edit Page" s With The Form Tag XE "New and Edit Pages With The Form Tag"

 XE "Form Tag"

The <a> Tag Hyperlink" Tutorial 16 - The <a> Tag Hyperlink for Data Driven Pages

Introductory Concepts and Comments

In Chapter 3 we deliberately focused on helping you get something done without spending much time looking under the hood--or should we say--behind the “Magic Curtain.” In Chapter 3, Tutorial 14, we provided a hint of this functionality when we showed you how to XE "to" change the navigation tab order XE "order" .

When we first discovered Hobo XE "Hobo" , we were impressed by what seemed like little magic tricks that Tom had Hobo perform for us: Dynamic AJAX without coding; automatic page flow; automatic checking and executing changes to XE "to" the database when declarations change; built-in permissions system and data lifecycles; high-level declarative markup language: you can do so much that looks and acts great.

Of course, there will ALWAYS be something you need to XE "to" do that doesn’t come ready-made out-of-the-box. So--just like learning magic tricks--you can learn how Hobo XE "Hobo" works and create some new magic tricks of your own to impress and help your clients in Rapid time.

No magician worth his salt will reveal his tricks to XE "to" an apprentice all at once. There is XE "is" only so much we can absorb at one time. The trick to learning-- as well as developing software--is to do it incrementally. Get grounded at each step. Most magic tricks use the same knowledge of human perception, habits and expectations to create the illusions.

Learning one trick helps you learn another faster. Then you learn the patterns. Then you learn to XE "to" make more patterns that you and others can use again and again.

So, in this chapter we will start revealing how “Rapid” works in way we think it can best be absorbed. One of the ways is XE "is" to XE "to" examine the code that the author has written that runs the application itself. In the early versions of Hobo XE "Hobo" , the rendering of pages, forms, and navigation flow was done “auto-magically” by Rapid. You couldn’t see how it worked until version 0.8.0. It was in this release that Tom Locke made visible the DRYML XE "DRYML" code that was being executed in the background, invisibly

So now you can look, learn, and copy the DRYML XE "DRYML" that Rapid actually uses to XE "to" generate Pages, Cards, Forms and the Main Navigation Menu.

Take a close look at \apps\views\taglibs XE "taglibs" \auto\rapid folder of any of your Hobo XE "Hobo" apps:

[image: image69.png]Fle Edt View Favortes Took Help

O - © - (] Do [rots

ckress | £ Citutoralsmy-frt-appapplviewsltagibs|autolrapid

Name See Type Date Modfied
File and Folder Tasks AL) cards.dryml 1K DRYMLFile 7/19/2009 4:26 PM
29 ke anewfoldr 2] forms. dryml 2KB DRYMLFile 7119/2009 4:26 P

[#]pages.dryml 6K DRYMLFile 7/19/2003 4:26 PM

7 shr tis fokdr

Notice that there are three DRYML XE "DRYML" files: cards.dryml XE "cards.dryml" , forms.dryml, and pages.dryml XE "pages.dryml" .

These files include XE "include" the DRYML XML-like formatted tags that are the declarative statements used as templates to XE "to" render web page views and forms. They provide the logic to render a combination of HTML XE "HTML" , JavaScript, and CSS XE "CSS" code when needed,

DRYML XE "DRYML" provides a high-level of abstraction for formatting web pages and dealing with all aspects of data-driven applications--listing, displaying, creating, editing and deleting records, without the necessity of specifying the granular level of detail that other frameworks require, such as the hybrid of Ruby and HTML XE "HTML" in its views as Rails does with its eRB (embedded Ruby) pages.

In this chapter we will explore:

(1) The Hobo XE "Hobo" Rapid library of tags

(2) The auto-generated XE "auto-generated" DRYML XE "DRYML" files that expose the Rapid process

(3) User-defined tags that you can use to XE "to" extend Hobo XE "Hobo"
Hobo XE "Hobo" Rapid Library of Tags. Hobo comes with a pre-coded set of tags that you can use to XE "to" build other tags. It provides tags to handle forms, display collections of record XE "display collections of record" s, and render a table of records. Hobo uses these to build the Rapid default web pages. You will learn to use some of the more common Rapid tags in this chapter.

Auto-generated DRYML XE "DRYML" . These DRYML files are saved replicas of Hobo XE "Hobo" ’s way of coding the view associated with all of the web site actions XE "actions" . For example, there is XE "is" a <show-page> tag involved with displaying a single record, and <index-page> tag to XE "to" display a list of records XE "display a list of records" , and a <new-page> tag involved with generating the form XE "form" to accept the data for a new record.

User-defined Tags. In order XE "order" to XE "to" create your own tags, Hobo XE "Hobo" provides tag definition language elements. You can build custom tags that include XE "include" HTML XE "HTML" , DRYML XE "DRYML" tags defined in Hobo’s Rapid library, and even imbedded custom Ruby code. There is XE "is" great flexibility XE "flexibility" . The end result can be simple tag that you use in a Hobo view template to include in the definition of a web page.

Tutorial 9 – Editing Auto-Generated Tag XE "Auto-Generated Tag" s XE "Editing Auto-Generated Tags"

In this tutorial, you learn about Hobo XE "Hobo" ’s auto-generated XE "auto-generated" tags that render views in response to XE "to" controller actions XE "actions" . You will learn your way around Hobo’s Rapid directories and files where the auto-generated tags are stored. You will also learn how to make minor edits to the auto-generated tags to prepare you for making tags from tags and redefining tags in later tutorials.

Hobo XE "Hobo" ’s Rapid component handles the generation of an application’s auto-generated XE "auto-generated" tags. The auto-generated tags are built from both HTML XE "HTML" and Hobo’s internal library of XML XE "XML" tags called the Rapid Library.

The most important lesson you will learn in this tutorial is XE "is" how Hobo XE "Hobo" associates its fundamental auto-generated XE "auto-generated" tags with the four fundamental controller actions XE "actions" :

· index for listing collections of records
· show for displaying a single record
· new for creating records
· edit for editing a single record
The other fundamental actions XE "actions" of saving new and edited records and deleting records are embedded within these fundamental tags as links because they do not need their own web pages. In addition to XE "to" these four main tags, there is XE "is" also a navigation tag that defines certain parts of the navigation interface.

Topics

5. Edit an index page tag
6. Edit a card XE "card" tag
7. Edit a form XE "form" tag
8. Edit the Navigation tags
Tutorial Application: four_table

Steps

1.
Start your web server. We are going to XE "to" continue on from Chapter 3 and use the four_table application. If you don’t have it started, navigate to your four_table directory, in tutorials/four_table, and start the application.

four_table> ruby script/server XE "ruby script/server"
You should now have a UI XE "UI" that looks like this:

[image: image70.png]Ele Edt Vew Hstory Bookmarks Ioos Help

@ - ¢ X & (Ol

Most Visited ¥ Getting Started (5. Latest Headines

admin@barguin com ¥

Four Table

Categories || Countries || Recipes

Welcome to Four Table

Congratulations! Your Hobo Rails App is up and running
o T customise this page: adit appviews front/index.dryml

Now open your editor and navigate to XE "to" the views/taglibs XE "taglibs" directory:

[image: image71.png]Project

5 four tabe
=y

D controlers
© hepers

5 models
5 viewhints
5 views
D cotegories
) countries
© fronk
3 boyous
5 recines
& 0 tegibs
EI=YTy
& repid

9] cards.dryml
Forms.dryml
pages.dryml

5 £ themes
D dean
() appication.cryml
£ user_maer
5 users
& config
=1
O doc
=13
Slog
& publc
) serot
S test
St
) vendor
3 Rakeie
5 ReaME

Figure 76: Folder view of the rapid DRYML XE "DRYML" files

Take a look at this directory structure. Focus on the files in the views/taglibs XE "taglibs" /rapid directory. The Rapid auto-generated XE "auto-generated" tags are stored in these files. Hobo XE "Hobo" updates the three Rapid directory files, pages.dryml XE "pages.dryml" , forms.dryml and cards.dryml XE "cards.dryml" every time you run a hobo_migration XE "hobo_migration"

 XE "migration" . Don’t edit these files because Hobo will overwrite them. You can copy and paste pieces, and therefore override them, with code placed in either the application.dryml XE "application.dryml" file or in a template file in a view directory named for a specific model, e.g. views/recipes. This will be explained below in this tutorial.

2.
Familiarize yourself with the Rapid auto-generated XE "auto-generated" files. Let’s look at the pages.dryml XE "pages.dryml" file first. Open up the views/taglibs XE "taglibs" /auto/rapid/pages.dryml file. You will see a series of tag definitions. Look through the file. Notice that there is XE "is" a Main Navigation section, a Recipes section and a Users section. There are also sections related to XE "to" the app’s other models.

We will be talking about the Recipes and Navigation section in this tutorial.

Open up the forms.dryml and cards.dryml XE "cards.dryml" files and page through them. You will see similar structures. You will see a section describing Recipes and the other models we have built so far.

Now that you have familiarized yourself with the three Rapid auto-generated XE "auto-generated" tag files, go back to XE "to" the pages.dryml XE "pages.dryml" file.

3.
Understanding the pages.dryml XE "pages.dryml" file. We are not going to XE "to" explain every detail about what you see in pages.dryml at this point. In subsequent tutorials in this chapter, you will learn most of the key points. The goal in this tutorial is XE "is" to get some familiarity with the tag structures and how Hobo XE "Hobo" uses and overrides them.

Now focus in on the Recipes section. You will see four tag definitions: <index-page>, <show-page>, <new-page> and <edit-page>. The following table explains what each of these does. Rapid automatically creates this set of four tags for each model in your application.

<!-- ====== Recipe Pages ====== -->

<def tag="index-page" for="Recipe"> . . .

</def>

<def tag="new-page" for="Recipe"> . . .

</def>

<def tag="show-page" for="Recipe"> . . .

</def>

<def tag="edit-page" for="Recipe"> . . .

</def>

[image: image72.png]File Edit View Text Navigation Bundles

Project

£ four_table
=y

£ controlers
© hepers

5 models
5 viewhints
5 views
© categories
) countries
© fronk
3 boyous
5 recines
5 3 taglbs
EI=YTy
£ 6 repid
9] cords.drym
19 forms.ciryml
9] pages.dryml
5 £ themes
D dean
() appication.cryml
£ user_maer
0 users
3 config
=
© doc
=1
Slog
& publc
© st

-

Help.
8

Dcatsgorysh (1| [pages.dryml
2z - Recive Pages E

213

218

215 |<aer tag="index-page” for="Recipe">

216 | <page merge citle=Recipes™>

217 | <woay: class—"index-page recipe” parans>

210

219 | <content: paren

220 “neader paran"content-header">

o 02 paranheading">Recipes</z>

222

223 <p paran-rcoumnt” if>There <count prefix="are"/></p>
224 </meader>

225

226 <section paran="content-body™>

27

220 cnode1” paren="neu-Link"s>
229

230 <page-nay paran—"cop-page-nav’s>

2

222 <oollection parans>

233

234 <page-nay param="boccon-page-nav s>

235

236

27 <rsection

230 | <sconenc>

239 | <spage]

210 |<saee>

241

Figure 77: Content of the "pages.dryml XE "pages.dryml" " file

You cannot see it explicitly in the pages.dryml XE "pages.dryml" file, but the <index-page> tag calls the Recipe <card XE "card" > tag. We will demonstrate this by editing them shortly. The <new-page> and <edit-page> tags call the Recipe <form XE "form" > tags.

These auto-generated XE "auto-generated" tags, each of the four tags above as well as the <form XE "form" > and <card XE "card" > tags, are built from tags defined in the Rapid library of tags. The four page tags are built from the Rapid <page> tag, the form tag from the Rapid <form> tag and the card tag from the Rapid <card> tag.

You might be confused at first because the auto-generated XE "auto-generated" tags <form XE "form" > and <card XE "card" > have the same names as the Rapid auto-generated tags. What Hobo XE "Hobo" is XE "is" really doing is redefining these tags and using the same tag name XE "name" in the redefined tag.

The last important point to XE "to" realize is XE "is" that there is a one-to-one association between these four tags and both controller actions XE "actions" and their associated routes. Routes are the URLs related to the web pages resulting from a particular controller action XE "action" . The routes are automatically defined by Hobo XE "Hobo" (although they can be user-defined and customized too).

The controller action XE "action" can be executed by navigating to XE "to" the browser route URL noted below. The comments above are summarized in the following table.

	Tag
	Meaning
	Calls
	Controller Action
	Route (URL)

	<index-page>
	renders a list of model records
	Cards
	index
	*/model_name(XE "name"

 XE "model_name" plural) XE "plural"

	<new-page>
	renders a data entry page for a new record.
	Forms
	new
	*/model_name/ XE "name"

 XE "model_name" new

	<show-page>
	renders a single record.
	None
	show
	*/model_name/ XE "model_name" ID-record_name XE "name"

	<edit-page>
	renders a data entry page for an existing record.
	Forms
	edit
	*/model_name/ XE "model_name" edit/ID-record_name XE "name"

Figure 78: Hobo XE "Hobo" Page Action Tag definitions

 Note that * refers to XE "to" the route URL for your app which is XE "is" usually http://localhost:3000 for Ruby on Rails development setups.

4.
Edit the index page (method XE "method" 1). Open up the pages.dryml XE "pages.dryml" file and look at the <index-page> tag definition. Here is XE "is" what it looks like:

[image: image73.png]Project

5 four tabe
=y

£ controlers
© hepers

5 models
5 viewhints
5 views
© categories
) countries
© fronk
3 boyous
5 recines
5 3 taglbs
EI=YTy
£ 6 repid
9] cords.drym
19 forms.ciryml
9] pages.dryml
2 themes
[9) appication.dryml
£ user_maer
0 users
3 config
=
© doc
=1
Slog
& publc
© st
O test
St
5 vendor
5 Rokefie

[index.cymi

210
211
212
213
214

Ocardscyml 23| () sppicaton.cryml

Recipe Pages

<def tag="index-page” for="Recipe"
<page merge title="Recipes™
<body: class="index-page recipe” paran/>

<content: paran>
<header parau="content-header™

<2 paran="heading">Recipes</hz>

<p paran="cownt” if>There <count prefix="are”/></p>
</header>

<section paran="content-body™>

<a action="new”

"enodel” paran="new-Link"/>

<page-nav par:

“top-page-nav"/>

<collection paran/>

<page-nav paran="botton-page-nav’ />

</section>
</content:>
</page>
</e>

[pages.dryml &

You invoke the index action XE "action" by clicking on a tab with a particular model name XE "name" , which is XE "is" Recipes in this example. Go ahead and click the Recipes tab to XE "to" remind yourself where you left off in Tutorial 16 of Chapter 3

[image: image74.png]e e lod Loggedinas Admin Account Logout

Four Table

Categories || Countries

Recipes
There are 3 Resipes
New Recipe

Barbecued Chicken Wings
0 Category Assignments

Omelet
0 Category Assignments

Hamburger
0 Category Assignments

Note that the URL above, http://localhost:3000/recipes, has the form XE "form" of an index action XE "action" . (Refer to XE "to" the Hobo XE "Hobo" Page Action Tag definitions figure earlier in this tutorial.) You can see three lines of text in the body XE "body" of the tab beginning with the ‘Recipes’ title, then ‘There are 3 Recipes’, a ‘New Recipe’ hyperlink, and finally the list of recipes.

There are three levels of overriding which Hobo XE "Hobo" handles by checking sequentially in three directories for the tags or tag definitions it will use to XE "to" render a view template.

The first place Hobo XE "Hobo" looks to XE "to" find the information it needs to render a view template corresponding to a particular model is XE "is" the /views directory corresponding to that model. In this case, note that /views/recipes is empty.

[image: image75.png][views
> gmcwies

The next place Hobo XE "Hobo" goes is XE "is" the views/taglibs XE "taglibs" /application.dryml XE "application.dryml" file. The last place Hobo goes is the views/taglibs/auto/rapid/pages.dryml XE "pages.dryml" file.

You are going to XE "to" put the recipe index tag definition in application.dryml XE "application.dryml" causing Hobo XE "Hobo" to use level 2. So take the code above from pages.dryml XE "pages.dryml" beginning with

<def tag="index-page" for="Recipe">

and paste it into /views/taglibs XE "taglibs" /application.dryml XE "application.dryml" file. Paste it below the following code in views/taglibs/application.dryml file.

<include XE "include" src="rapid" plugin="hobo"/>

<include XE "include" src="taglibs XE "taglibs" /auto/rapid/cards"/>

<include XE "include" src="taglibs XE "taglibs" /auto/rapid/pages"/>

<include XE "include" src="taglibs XE "taglibs" /auto/rapid/forms"/>

<set-theme name XE "name" ="clean"/>

<def tag="app-name">Four Table</def>

<def tag="index-page" for="Recipe">

. . .

The line in bold italics above is XE "is" the first line from your copied code.

[image: image76.png]File Edit Wiew Text Navigation Bundles

Project

Help
8

5 four tabe
=y

£ controlers
© hepers

5 models
5 viewhints
5 views
D cotegories
) countries
© fronk
3 boyous
5 recines
5 3 taglbs
EI=YTy
£ 6 repid
9] cords.drym
19 forms.ciyml
9] pages.dryml
2 themes
[9) appication.cryml
£ user_maer
0 users
3 config
=
© doc
=1
Slog
& publc
© st
O test
St
5 vendor
Ralefil

Clpogesanl)| L) pplcationdryml @

L [cinclude sre-"rapid” plugin-"hobo"/>
2

5 cancinge sco-taglins auto/capia/cazis” />
4 [cancinge sco-“tagline auto/capio/pages” />
S [cancinas sco-taglins auto/capi/fomms />

c

7 coet-thens naus-clean/>

s

9 |t cag="epp-nane">Four Table</der>

10

11| et cage"index-page” for="Recipe">

12 <page merge title-Recipes>

13]| " <boay: class-rinder-page recipe” parans>
11

155 <content: paran>

160 nassr parenconvent-heater

17 <tz pareu-hessing >Recipes< /2>

1

15 < pazamn-rcoumt” 16There <coumt prefin-rare” >/
« <measers

2

| <azorion parau-content-bosy'>

2

2 P U ————
2

2 <page-nay paransop-page-nav’/>

27

2 <eollzction pazan/s

2

% <page-nay paran-borton-page-nav/>
a

a2

= P

34 L </content:>

35 L </page>

36 L</de>

a7 |

%

Programming note. As you learn Hobo XE "Hobo" you might get confused between tag definitions and tags. This is XE "is" often the case because Hobo does not need you to XE "to" specifically invoke the tags that are defined in the Rapid files (pages.dryml XE "pages.dryml" , etc.) or in the application.dryml XE "application.dryml" file. If the tags have the default names “index”, “new”,”show”, or “edit”, then Hobo creates the template on the fly. You do not have to put tag code in a template yourself unless you do not want to use Hobo’s default template.

First, refresh your browser to XE "to" confirm that the UI XE "UI" has not changed XE "changed" . Simply copying a tag definition from pages.dryml XE "pages.dryml" to application.dryml XE "application.dryml" with no changes to the tag definition should not change the page rendering. It is XE "is" a good idea to double check in case you copied something wrong so you won’t confuse a copy mistake with a coding mistake.

Let’s make a minor change to XE "to" convince you that this is XE "is" what is happening. Note that the line in bold italics below is what has changed XE "changed" .

<def tag="index-page" for="Recipe">

 <page merge title="Recipes">

 <body XE "body" : class="index-page recipe" param XE "param" />

 <content XE "content" : param XE "param" >

 <header XE "header" param XE "param" ="content-header XE "content-header" ">

 <h2 param XE "param" ="heading XE "heading" ">My Recipes</h2>

 <p param XE "param" ="count" if>There <count prefix="are"/></p>

 </header XE "header" >

 <section param XE "param" ="content-body XE "content-body" ">

 <a action XE "action" ="new" to XE "to" ="&model" param XE "param" ="new-link"/>

 <page-nav XE "page-nav" param XE "param" ="top-page-nav"/>

 <collection XE "collection" param XE "param" />

 <page-nav XE "page-nav" param XE "param" ="bottom-page-nav"/>

 </section>

 </content XE "content" :>

 </page>

</def>

Now refresh your browser and you will see that Hobo XE "Hobo" has changed XE "changed" the template it generated dynamically:

[image: image77.png]admin@barguin.com |1l R

Four Table

Home || Categories [| Countries

My Recipes
Thers are 3 Resipes
New Recipe

Barbecued Chicken Wings
0 Category Assignments

Omelet
0 Category Assignments

Hamburger
0 Category Assignments

Figure 84: Page view of "My Recipes" after modifying the <index-page> tag

You should see that the first line of the page has changed XE "changed" from “Recipes” to XE "to" “My Recipes”.

Let us describe what happened.

· Step 1: Hobo XE "Hobo" looked for a template in the views/recipes/ directory called index.dryml XE "index.dryml" .

· Step 2: Since views/recipes/index.dryml XE "index.dryml" did not exist, Hobo XE "Hobo" next looked in views/taglib/application.dryml XE "application.dryml" where it found the tag definition for the index page.

· Step 3: Hobo XE "Hobo" used this tag definition to XE "to" generate the contents of the “index” page.

5.
Change the index page (method XE "method" 2). If you want to XE "to" change the index page directly, you can create a new file in the views/recipes directory called index.dryml XE "index.dryml" .

We haven’t given you enough information for you to XE "to" build your own index.dryml XE "index.dryml" template using Hobo XE "Hobo" ’s tag library yet. We said above that Hobo will look there first for a page to render when the index action XE "action" is XE "is" invoked.

So if you place an empty file here, you get a blank page rendered. Go ahead and create a file called index.dryml XE "index.dryml" in the views/recipes directory. Confirm for yourself that you get a blank page.

Now let’s do something a little more useful. Add the single line of code below to XE "to" the index.dryml XE "index.dryml" file:

<index-page/>

[image: image78.png]File Edit U Text Navigation Bundles Help
8[| [indexdryml

Project

£ four table
=y

£ controlers
© hepers

) moceks
) viewhits
5 views
© categories
) courtries
) Front
3 boyous
) recpes
5 3 taglbs

EI=YTy

£ 6 repid

erds.cryml
fForms.dryml
pages.dryml

2 themes

[9) appication.dryml

25 user_maier
5 users

& config

=1

O doc

=13

Slog

& publc

) serot

S test

St

) vendor

3 Rakeie

ERT

@ index.drvml

1

[cinaes-page/s|

Programming note. The Hobo XE "Hobo" tag syntax is XE "is" just like you would expect from HTML XE "HTML" or XML XE "XML" . The code <index-page/> is equivalent to XE "to" <index-page></index-page>. Watch your placement of “/”. It was our most frequent error when we started with DRYML XE "DRYML" .

Now refresh your browser and you will see the same page rendered as in Step 4. What has happened is XE "is" that Hobo XE "Hobo" has checked in the views/recipes directory for a file called index.dryml XE "index.dryml" , found one and rendered it. When it encountered the <index-page/> tag, it first checked in index.dryml for a tag definition. Not finding one there, it checked in application.dryml XE "application.dryml" where it found one to XE "to" use in rendering the <index-page/> tag in index.dryml. If it had not found a tag definition in application.dryml, Hobo would have gone back to pages.dryml XE "pages.dryml" for the default <index-page> definition.

Programming note. You can put a tag definition in either a view template file or in application.dryml XE "application.dryml" but Hobo XE "Hobo" will ignore tags in application.dryml. The application.dryml file is XE "is" for tag definitions only.

6.
Edit an individual record’s view in the index page. By now, you should have entered a couple of recipes. Be sure to XE "to" do that if you have not.

In Table 1 above, we indicated that the <index-page> tag calls <card XE "card" > tags to XE "to" render individual records. We can demonstrate this process by changing a <card> tag. Go to the cards.dryml XE "cards.dryml" file in the rapid directory and copy the <card> definition for recipe cards into the application.dryml XE "application.dryml" file below the <index-page> definition. Hobo XE "Hobo" will now use this version of the <card> tag when it uses the <index-page>.
<def tag="card XE "card" " for="Recipe">

 <card XE "card" class="recipe" param XE "param" ="default" merge>

 <header XE "header" : param XE "param" >

 <h4 param XE "param" ="heading XE "heading" "><a><name XE "name" /></h4>

 </header XE "header" :>

 <body XE "body" : param XE "param" >

 <count:categories param XE "param" />

 </body XE "body" :>

 </card XE "card" >

</def>

Again, we will not explain the detailed syntax of this tag yet. Let’s just make a simple change (in bold italics below) to XE "to" demonstrate how Hobo XE "Hobo" works:

<def tag="card XE "card" " for="Recipe">

 <card XE "card" class="recipe" param XE "param" ="default" merge>

 <header XE "header" : param XE "param" >

 <h4 param XE "param" ="heading XE "heading" "><a><name XE "name" />....test</h4>

 </header XE "header" :>

 <body XE "body" : param XE "param" >

 <count:categories param XE "param" />

 </body XE "body" :>

 </card XE "card" >

</def>

Now refresh your browser. Click the ‘Recipes’ tab to XE "to" invoke the index action XE "action" using the <index-page> tag.

[image: image79.png]admin@barquin.com V|0 IR

Four Table

Home || Categories [| Countries

My Recipes
Thers are 3 Resipes
New Recipe

Barbecued Chicken Wings...test
0 Category Assignments

Omelet...test
0 Category Assignments

Hamburger...test
0 Category Assignments

Figure 86: Page view of My Recipes to XE "to" show how a change to the <index-page> tag affects a collection XE "collection"
You see how each record displayed has been changed XE "changed" . You didn’t need to XE "to" iterate through a loop. Iterating through all records in a collection XE "collection" is XE "is" built in to Hobo XE "Hobo" ’s tag processing. If you look back to Step 4 to see the <index-page> tag definition, you will see the following line:

<collection XE "collection" param XE "param" />

It is XE "is" here that the <card XE "card" > tag is called. The <collection XE "collection" > tag refers to XE "to" a collection of records from a data model.

Now click on one of the recipe name XE "name" hyperlinks which will invoke the <show-page> tag in pages.dryml XE "pages.dryml" . Since you haven’t changed XE "changed" this tag and since it does not use the <card XE "card" > tag, you will NOT see ‘....test’ appended to XE "to" recipe names as you do when Hobo XE "Hobo" lists recipes using the <index-page> tag.

To finish up this step, remove the text ‘....test’ to XE "to" keep things looking nice.

6.
Editing a form XE "form" . To modify a form, you ca do something similar to XE "to" editing the <card XE "card" > tag above. In this case, the relevant page tag is XE "is" the <new-page> tag in pages.dryml XE "pages.dryml" . It calls the <form> tag. You can see that in the forms.dryml file.

7.
Editing navigation tabs and their order XE "order" . As you have seen, Hobo XE "Hobo" provides a predefined tab-based user interface. By default, it arranges the tabs alphabetically by model. This is XE "is" probably not what you want. You more than likely want to XE "to" set up an order that makes sense for your application.

This is XE "is" readily done. Find the <main-nav> tag definition in the pages.dryml XE "pages.dryml" file and copy it into application.dryml XE "application.dryml" right after the <app-name> tag definition.

<def tag="main-nav">

 <navigation class="main-nav" merge-attrs XE "merge-attrs" >

 <nav-item href="#{base_url}/">Home</nav-item>

 <nav-item with="&Category">Categories</nav-item>

 <nav-item with="&Country">Countries</nav-item>

 <nav-item with="&Recipe">Recipes</nav-item>

 </navigation>

</def>

Now let’s change the order XE "order" of the tabs in your UI XE "UI" . Change the order of your tabs by moving the Recipes tab up to XE "to" the position noted below in bold italics.

<def tag="main-nav">

 <navigation class="main-nav" merge-attrs XE "merge-attrs" >

 <nav-item href="#{base_url}/">Home</nav-item>

 <nav-item with="&Recipe">Recipes</nav-item>

 <nav-item with="&Category">Categories</nav-item>

 <nav-item with="&Country">Countries</nav-item>

 </navigation>

</def>

Now refresh your browser and you will see the new tab order XE "order" :

[image: image80]
8.
Editing an application name XE "name" . If you want to XE "to" change the name of the application that appears on all the UI XE "UI" web pages, you can do this easily also. The <app-name> tag definition is XE "is" found near the top of the application.dryml XE "application.dryml" file and is automatically generated from the name when you originally generated the application. Just change the content XE "content" of the <def> tag to what you want.

<def tag="app-name">Four Tables, No Waiting</def>

[image: image81.png]admin@barguin.com ¥l R

Four Tables, No Waiting

Categories || Countries

My Recipes
Thers are 3 Resipes
New Recipe

Barbecued Chicken Wings
0 Category Assignments

Omelet
0 Category Assignments

Hamburger
0 Category Assignments

9.Summary. The Hobo XE "Hobo" Rapid generator creates tag definitions and places them in the files of the Rapid directory. The programmer overrides, redefines, and defines new tags in application.dryml XE "application.dryml" . These definitions are available throughout the application. So far, you have just learned how to XE "to" override tags.

There are no tag calls in application.dryml XE "application.dryml" except within a tag definition because application.dryml is XE "is" NOT a template file. The programmer invokes--that is--calls tags in template files placed in the view/model_name XE "model_name"

 XE "name" directories.

The programmer may also override, redefine, or define a new tag within a template, but this modification is XE "is" local (e.g., only available within that template).

Tutorial 10 – DRYML XE "DRYML" I: A First Look at DRYML

You will be introduced to XE "to" the concept of a user-defined tag, called a DRYML XE "DRYML" tag. The tutorial shows you how to make minor changes to the home page template by defining DRYML tags. You will also learn how to parameterize tags with the DRYML parameter attribute XE "attribute" , param XE "param" .

Vocabulary note. Notice the double meaning of parameter in the former sentence. Also, be sure not to XE "to" confuse the DRYML XE "DRYML" param XE "param" with the Rails params XE "params" object which you might know about if you are a Rails programmer.

Topics

· Define a DRYML XE "DRYML" tag in the front/index.dryml XE "index.dryml" template
· Call the DRYML XE "DRYML" tag in the front/index.dryml XE "index.dryml" template
· Add a parameter to XE "to" the DRYML XE "DRYML" tag
· Add an attribute XE "attribute" to XE "to" the DRYML XE "DRYML" tag
Tutorial Application: four_table

Steps

1.
Define a tag. Open up the views/front/index.dryml XE "index.dryml" file of the four_table application. This is XE "is" Hobo XE "Hobo" ’s home page.

At the top of the file enter the following code. The <def> tag below is XE "is" Hobo XE "Hobo" ’s DRYML XE "DRYML" tag for defining a custom tag. The code below defines a <messages> tag.

<def tag="messages">

<ul XE "ul" >

Message 1

Message 2

Message 3

</ul XE "ul" >

</def>

The entire markup between the <def> tags is XE "is" standard HTML XE "HTML" . When called, this <messages> tag will emit a three-line list.

2.
Call the tag. Go to XE "to" the line that reads:

<h3>Congratulations! Your Hobo XE "Hobo" Rails App is XE "is" up and running</h3>

Add a line after this one so that it reads:

<h3>Congratulations! Your Hobo XE "Hobo" Rails App is XE "is" up and running</h3>

<messages/>

Programming note. The correct syntax is XE "is" to XE "to" place the forward slash after the tag name XE "name" when you use the tag as a single tag rather than in the form XE "form" of an opening and closing tag with no content XE "content" in between.

[image: image82.png]Project

£ four table
E=r
& £ controlers
& (5 hepers
& (5 modeks
& (5 viewhits
& 5 views
5 categories
S countries
& Front
[9) indes.cryml
& layouss
& recioes
& tagibs
E D ato
£ rapid
] carcs cryml
fForms.dryml
pages.dryml
& £ themes
[9) appication.cryml
& £ user_maier
O users
& £ config
w0k
& 5 doc
=13
=
5 publc
& (5 sernt
O test
&St
& (5 vendor
3 Rakeie
ERT
(9] index.drymi

ua

18
15

<page title="Hone">
<body: class="Eront-page”/>
<content:>
<header class="content-header™
<hl>Ueloone to <app-name/></hl>
<section class="welcone-nessage”™.

<h3>l:anixa\:ulamans‘ Your Hobo Rails App is up and running</hS>

<1i>To custonise this page:
</ui>
</section>
</header>

<section class="content-body™>
</section>

</content:>

</page>

edit app/vievs/front/index. dryul</1i>

Then refresh your browser:

[image: image83.png]Guest v

Four Tables, No Waiting

Recipes || Categories || Countries

Welcome to Four Tables, No Waiting

Congratulations! Your Hobo Rails App is up and running

o fhessaze |
o hessage 2
o hessage 3
* To customise this paze: edit app/views/frant findex. dryml

One of the things that is XE "is" different from Tutorial 1 is that you are now working both with a DRYML XE "DRYML" tag definition and with a DRYML tag. In the previous tutorial, you edited the tag definitions but you did not invoke a tag such as <index-page> explicitly.

 Hobo XE "Hobo" took care of invoking the tags for you on-the-fly. Since Hobo’s Rapid component knows what the basic structure of a data driven web page is XE "is" , it does not require you to XE "to" code the template explicitly except when you want something different than the Hobo default.

In this tutorial you will be defining new tags unknown to XE "to" Hobo XE "Hobo" , so you of course must invoke them explicitly.

3.
Parameterize the tag. Change the following code in the <messages> tag definition from:

Message 1

Message 2

Message 3

to XE "to" :

<li param XE "param" ="msg1">Message 1

<li param XE "param" ="msg2">Message 2

<li param XE "param" ="msg3">Message 3

You have now created three parameters which can be invoked in the following way:

<msg1:>message text</msg1:>

<msg1:> is XE "is" called a parameter tag XE "parameter tag" .

Syntax Note. The colon (:) suffix indicates that the tag is XE "is" a defined parameter tag XE "parameter tag" . Later you will learn that some parameter tags [are defined for you in the Rapid library].

4.
Use a parameter. Let’s invoke the <messages> tag but change the third message by addressing the <msg3:> parameter tag XE "parameter tag" .

<h3>Congratulations! Your Hobo XE "Hobo" Rails App is XE "is" up and running</h3>

<messages>

<msg3:>This is XE "is" the third message passed as a parameter.</msg3>

</messages>

The first two lines will remain the same while the third changes due to XE "to" the use of the <msg3:> parameter tag XE "parameter tag" . You have used a tag to pass data from the <msg3:> parameter tag into the <messages> tag.

[image: image84.png]File gkl View Text Navigation Bundles Help
Project S| eindendryml
) four_table 1
Bt 20 caer tag-rnessages™>
& 3 controllers 3?

@ 2 heers a <
@ 2 models s <11 paran=rusglliessage 1</1i>
&) viewhints 6 <1i paran="nsg2">Message 2</1i>
=0 views 7 <1i paran="nsg3">Message 3
2 categories ol <>
S countries o lesaes
=3 front 10
[9) incex.cryml 115 page vitle="Hone">
© layouts 2
0 reces 1
52 tagbs 14 || <woay: class="tront-page"s>
SQ 15
5 Erapd 1
9] cards 175] <content:>
forms.chyml 180] <heaer class="content-header>
) themes <section class="welcome-message>

[9) appication.cryml
& () ser_maier
) users
& £ config
Db
& 5 doc
B0l
5 g
5 publc
5 seript
O test
B0 tmp
& (5 vendor
3 Rakeie
ERT
9] indexcrym

20
21

<h3>Congratulations! Your Hobo Rails App is up and running</h3>

<1i>To custonise this page:
</ui>
</section>
</header>

<section class="content-body™>
</section>

</content:>

</page>

edit app/vievs/front/index. dryul</1i>

[image: image85.png]Guest v

Four Tables, No Waiting

Recipes || Categories || Countries

Welcome to Four Tables, No Waiting

Congratulations! Your Hobo Rails App is up and running

o fhessaze |
o hessage 2

* To customise this paze: edit app/views/front findex. dryml

5. Use some more parameters. Change the other two message lines likewise to XE "to" :

<messages>

<msg1:>This is XE "is" the first message called as a parameter</msg1>

<msg2:>This is XE "is" the second message called as a parameter.</msg2>

<msg3:>This is XE "is" the third message called as a parameter.</msg3>

</messages>

and you should see:

[image: image86.png]Guest v

Four Tables, No Waiting

Recipes || Categories || Countries

Welcome to Four Tables, No Waiting

Congratulations! Your Hobo Rails App is up and running

o This s the first message called a5 3 parameter.
© This s the second messags called as 3 parameter.
© This is the third message called a5 3 parameter.

6. Reverse the order XE "order" of the parameter call. Now try the following code.

<messages>

<msg2:>This is XE "is" the second message.</msg2:>

<msg1:>This is XE "is" the first message.</msg1:>

<msg3:>This is XE "is" the third message.</msg3:>

<messages>

You will see that this edit will not change the order XE "order" of the list because the order is XE "is" defined by the tag definition not by its call. The tag calls the messages in the order set in the tag definition, namely <msg1:>, then <msg2:> and then <msg3:>.
7.
Create XE "Create" an html-like tag using param XE "param" =”default”. In the preceding steps, you learned how to XE "to" reach into a tag with three parameter tag XE "parameter tag" s and change the default message text XE "default message text" of the defined <messages> tag. Next you will emulate a regular HTML XE "HTML" formatting tag using the param=”default” attribute XE "attribute" .

Vocabulary note: We have referred to XE "to" an attribute XE "attribute" above rather than a parameter because a change will be made by setting param XE "param" to a value rather than by using a paramet er tag.

Go back to XE "to" the top of the views/front/index.dryml XE "index.dryml" file and enter the following code after the first <def> . . . </def> tags.

<def tag="bd-it">

<i>stuff</i>

</def>

Here we have redefined the HTML XE "HTML" tag to XE "to" format XE "format" the tag content XE "content" with bold AND italic formatting. Since the tag is XE "is" now parameterized, you can now replace the ‘stuff’ continent with something you might want to format.

Call the <bd-it> tag right after the closing </messages> tag without using the <span:> parameter. This will demonstrate that the tag will just emit the formatted default word stuff.

<messages>

<msg2:>This is XE "is" the second message.</msg2:>

<msg1:>This is XE "is" the first message.</msg1:>

<msg3:>This is XE "is" the third message.</msg3:>

</messages>

<bd-it/>

[image: image87.png]Guest v

Four Tables, No Waiting

Recipes || Categories || Countries

Welcome to Four Tables, No Waiting

Congratulations! Your Hobo Rails App is up and running

® This is the first message.
® This is the second message.
® This is the third message.

stuff e

If you use the <span:> parameter tag XE "parameter tag" , you will format XE "format" your content XE "content" .

<bd-it/>

<bd-it><span:>More stuff</span:></bd-it>

[image: image88.png]Guest v

Four Tables, No Waiting

Recipes || Categories || Countries

Welcome to Four Tables, No Waiting

Congratulations! Your Hobo Rails App is up and running

® This is the first message.
® This is the second message.
® This is the third message.

stuff
More stuff

But the second line is XE "is" a kind of clumsy looking way to XE "to" get: More stuff. Instead, change your <def> code to:

<def tag="bd-it">

<i>stuff</i>

</def>

The param XE "param" =”default” text is XE "is" saying is that the <span:> parameter is automatically assumed when you call the <bd-it> tag. You do not have to XE "to" explicitly call it. Now change your call to:

<bd-it/>

<bd-it>More Stuff</bd-it>

So now you have created a DRYML XE "DRYML" tag that looks just like an HTML XE "HTML" tag.

Note. Once you change the <span:> parameter to XE "to" the default parameter, Hobo XE "Hobo" will ignore explicit uses of it and only emit the default content XE "content" if you call it explicitly. Once you use the default parameter attribute XE "attribute" you are committed to the more compact notation. There can only be one “default” parameter in a tag definition.

The entire /views/front/index.dryml XE "index.dryml" contents at the end of this tutorial is XE "is" as follows:

<def tag="messages">

<ul XE "ul" >

<li param XE "param" ="msg1">Message 1

<li param XE "param" ="msg2">Message 2

<li param XE "param" ="msg3">Message 3

</ul XE "ul" >

</def>

<def tag="bd-it">

 <i>>stuff</i>

</def>

<page title="Home">

<body XE "body" : class="front-page"/>

 <content XE "content" :>

 <header XE "header" class="content-header XE "content-header" ">

 <h1>Welcome to XE "to" <app-name/></h1>

 <section class="welcome-message">

 <h3>Congratulations! Your Hobo XE "Hobo" Rails App is XE "is" up and running</h3>

 <messages>

 <msg2:>This is XE "is" the seond message.</msg2>

 <msg1:>This is XE "is" the first messsage.</msg1>

 <msg3:>This is XE "is" the third message passed as a parameter.</msg3>

 </messages>

 <bd-it/>

 <bd-it>More stuff</bd-it>

 </section>

 </header XE "header" >

 <section class="content-body XE "content-body" ">

 </section>

 </content XE "content" :>

</page>

Tutorial 11 – DRYML XE "DRYML" II: Creating Tags from Tags XE "Creating Tags from Tags"
You will go to XE "to" the next step in your understanding of DRYML XE "DRYML" . You will learn how to define tags from other tags. Specifically, you will learn how to create new tags that inherit parameters from the tags they are based on.

Tutorial Application: four_table

Topics

· Defining tags from tags using the merge tag
· Defining tags from tags using the extend tag
· Replacing tag parameters (not tag content XE "content")
1.
Define a tag based on another tag (method XE "method" 1). In Tutorial 10, you learned how to XE "to" define a tag called <messages> that output three lines of HTML XE "HTML" . Now you will define a new tag based on <messages> called <more-messages>. Place the following code below the <messages> tag definition. (The order XE "order" of tag definitions does not matter. This was just a recommendation for neatness.)

<def tag="more-messages">

<messages merge>

<msg2: param XE "param" >Message 2 Changed</msg2:>

</messages>

</def>

What you have done here is XE "is" to XE "to" edit the <msg2:> parameter tag XE "parameter tag" of the <messages> tag so that it has different default content XE "content" . By using the merge attribute XE "attribute" , you have told Hobo XE "Hobo" to use everything from the <messages> tag except for the change. Now let’s invoke this tag. Place the following code below your last code from the previous tutorial.

<more-messages/>

[image: image89.png]File Edt View Text Navigation Bundles Help

Project

5 four tabe
=y

£ controlers
© hepers

5 models
5 viewhints
5 views
© categories
5 countries
&0 front
[8) inder.cryml
& byouts
5 recines
5 3 taglbs
EI=YTy
£ 6 repid
9] cords.drym
19 forms.ciyml
9] pages.dryml
2 themes
[9) appication.dryml
£ user_maer
0 users
3 config
=
© doc
=1
Slog
& publc
© st
O test
St
5 vendor
3 Refil

=) resone
9] e

=) [Es] o

D indendrym! @

i

5
M
B

2]

<aet a

messages™>

<br/eapr/>

<li paran="usgl™lessage 1</1i>
<li paran="nsgz">Hessage 2</1i>
<li paran="usg3n>llessage 3</1i>
</ui

‘more-nessages”™>
<messages merge>

<usyz: parawlessage 2 Changed</usgzi>

</messages>
</e>

<aet a
</

Ba-ien

<i>sCuEES/spa></i>

</

<page title="Hone">

<body: clas:

“Eront-page”/>

<content:>
<header class="content-header™
<hl>Ueloone to <app-name/></hl>
<section class="welcone-nessage”™.

<h3>Congratulations! Your Hobo Rails App is up and running</h3>

<messages>

</messages>
<uore-nessages/>
<ba-ie/>
<ba-itslore stuff</bd-it>
</section>
</header>

Refresh your browser to XE "to" see the change the below.

[image: image90.png]Four Tables, No Waiting

Recipes || Categories || Countries

Welcome to Four Tables, No Waiting

Congratulations! Your Hobo Rails App is up and running

© This is the first message,
his s the second message.
© This is the third message.

o fhessaze |
© fhessage 2 Changed
o hessage 3

stuff
More stuff

Programming note. Later in this Chapter you will also learn how to XE "to" add attributes XE "attributes" to tags in addition to parameters. Merge means merge parameters AND attributes.

Remember that the text, ‘Message 1’ and ‘Message 3’ is XE "is" the default text from the <messages> tag.

2. Define a tag based on another tag (method XE "method" 2). In the last example, you learned how to XE "to" define a new tag based on an old tag. The new tag is XE "is" defined with a new name XE "name" , <more-messages>. You cannot use the merge method to define a tag from a tag without changing the name.

Go ahead and change <more-messages> to XE "to" <messages> to convince yourself that you will get an error.

However, Hobo XE "Hobo" does have a way of preserving tag names while creating tags from tags. It is XE "is" called extending a tag XE "extending a tag" . It works basically the same way as merging tags, except it uses the <extend> tag instead of the <def> tag to XE "to" define the new tag.

Now let’s create an extended tag. We will begin by creating a new tag called <messagex> and then extend it using the same name XE "name" .

<def tag="messagex">

<ul XE "ul" >

<li param XE "param" ="msg1">Message 1

<li param XE "param" ="msg2">Message 2

<li param XE "param" ="msg3">Message 3

</ul XE "ul" >

</def>

<extend tag="messagex">

<old-messagex merge>

<msg2: param XE "param" >Message 2 Extended</msg2:>

</old-messagex>

</extend>

Instead of placing the code above in front\.index.dryml XE "index.dryml" , you need to XE "to" put it in views/taglibs XE "taglibs" /application.dryml XE "application.dryml" . Recall this will make the tag definition available throughout your application. But there is XE "is" another reason for putting it here. You cannot use the <extend> tag in a view template, you can only use it within application.dryml.

[image: image91.png]Fie Edt I Text Nevigation Bundes Help

Project

£ four table
=y
& £ controlers
& (5 hepers
& (5 modeks
& (5 viewhits
& 5 views
5 categories
S countries
& Front
[9) indes.cryml
& layouss
& recioes
& tagibs
E D ato
£ rapid
] carcs cryml
fForms.dryml
pages.dryml
& £ themes
[9) appication.cryml
& £ user_maier
O users
& £ config
w0k
& 5 doc
=13
=
5 publc
& (5 sernt
O test
&St
& (5 vendor
3 Rakeie
ERT
(9] index.drymi

a» —1
[ancinge sco-rapia” plugin-hono/>
cincinge sco-taglins auto/capie/cazis” />
incinae sco-“tagiine auto/capio/pages” />
incinae sco-tagiinsauto/zapio/fomus />

<set-thene name="clean/>

‘app-nane">Four Tables, No Vaiting</det]

‘nain-nav">

120] <navigation class="nain-nav" merge-attrs paran="default™
13 <nav-iten href="#{base_url),/">Hone</nav-iten>

14 <nav-iten withe"sRecipe">Recipess/nav-iten>

15 <nav-iten with="sCategory">Categories/nav-iten>

16 <nav-iten withe"sCountry">Countriess/nav-iten>

171 </navigarion

18 Lcsaer>

index-page” for="Recipe">
<page merge title="Recipes™
<body: class="index-page recipe” paran/>
arams

[image: image92.png]File Edt View Text Navigation Bundles

Project

Help
8

5 four tabe
=y
& controlers
S helers
S models
S viewhints
5 views
5 categories
S countries
=0 front
[9) inder.cryml
& layous
& recioes
5 3 taglbs
EI=YTy
£ 6 repid
] carcs cryml
19 forms.ciyml
9] pages.dryml
5 themes
[9) appication.dryml
9 user_maler
O users
& config
=y
=y
=1
Qo
) publec
© st
Stest
S
5 vendor
3 Rakeie
ERT
9] index.dryml

D eoplcatonayml |

i

178

23
21

Dindendrymi G| | pages.coymi

<def tag="nessages™>
<br/eapr/>

<li paran="msgl">Hessage 1</1i>
<li paran="nsgz">Hessage 2</1i>
<li paran="msg3">Hessage 3</1i>
</ui
</e>

</

<i>sCuEES/spa></i>

</

<page title="Hone">

<body: clas:

£ront-page”/>

<content:>
<header class="content-header™
<hl>Ueloone to <app-name/></hl>
<section class="welcone-nessage”™.

<h3>Congratulations! Your Hobo Rails App is up and running</h3>

<messages>

</messages>

<ba-ie/>
<ba-itslore stuff</bd-it>
</section>

</header>

Before trying this out, you should delete (or comment out) the code for <more-messages> so you will not get confused.

In the code example above, we created a new tag <messagex> just like the old <messages> tag. We then extended it so that it would look just like the

<more-messages> tag from Step 1.

Now call the <messagex> tag in front/index.dryml XE "index.dryml" to XE "to" confirm that it yields output like the <more-messages> tag.

<messagex/>

You should see the following rendering:

[image: image93.png]Four Tables, No Waiting

Recipes || Categories || Countries

Welcome to Four Tables, No Waiting

Congratulations! Your Hobo Rails App is up and running

This i the first message.
This i the second message.
This i the third message.

Message X1
Message 2 Extended
o Message 3G

stuff
More stuff

3. Edit the merged tag in more ways. Let’s modify our <more-messages> tag of Step 1 which is XE "is" defined in front/index.dryml XE "index.dryml" . Remove or comment out the <messagex> tag so you won’t get confused.

We are going to XE "to" show you now that DRYML XE "DRYML" can do lots of things within the same tag definition with ease. First we will add a new parameter tag XE "parameter tag" before the merge line to demonstrate that you do not have to have the merge line right after your <def> line.

Next we will show you that you can put both parameter tag XE "parameter tag" s and non-parameter HTML XE "HTML" after merge markup. Let’s do this in two steps.

Edit your <more-messages> tag to XE "to" look like the following:

<def tag="more-messages">

<li param XE "param" ="msg0">Message 0

<messages merge>

<msg2: param XE "param" >Message 2 changed XE "changed" in merge.</msg2:>

</messages>

</def>

Make sure you call your <more-messages> tag and refresh your browser.

[image: image94.png]Login Signup

Four Tables, No Waiting

Recipes || Categories || Countries

Welcome to Four Tables, No Waiting

Congratulations! Your Hobo Rails App is up and running

© This is the first message,
© This s the second message,
© This is the third message.

* fhessage 0

o fhessaze |
© fhessage 2 changed in merze.
o hessage 3

stuff
More stuff

Figure 101: Page view of the <more-messages> tag usage

Let’s demonstrate that <msg0:> is XE "is" a real parameter tag XE "parameter tag" with the following code where you call the <more-messages> tag.

<more-messages>

<msg0:> Message 0 changed XE "changed" with parameter tag XE "parameter tag" .</msg0:>

</more-messages>

[image: image95.png]Four Tables, No Waiting

Recipes || Categories || Countries

Welcome to Four Tables, No Waiting

Congratulations! Your Hobo Rails App is up and running

© This is the first message,
© This s the second message,
© This is the third message.

o fhessage O changed with parameter tag,

o fhessaze |
© fhessage 2 changed in merze.
o hessage 3

stuff
More stuff

We have chosen this exercise to XE "to" remind you that you have changed XE "changed" the text in two ways.

· You changed XE "changed" the third block of messages by changing the tag definition within a merge.

· You changed XE "changed" the second block (Message 0) by calling a parameter tag XE "parameter tag" within a tag.

Now let’s edit the <more-messages> definition after the merge is XE "is" closed with </messages>. We have added two lines of DRYML XE "DRYML" . The first is a parameter tag XE "parameter tag" , <msg4:>. The second is pure HTML XE "HTML" without any parameterization.

<def tag="more-messages">

<li param XE "param" ="msg0">Message 0

<messages merge>

<msg2: param XE "param" >Message 2 changed XE "changed" in merge.</msg2:>

</messages>

<li param XE "param" ="msg4">Message 4

No Parameter Here
</def>

Now let’s invoke <more-messages> and change the default content XE "content" of the <msg4:> parameter tag XE "parameter tag" .

<more-messages>

<msg0:> Message 0 changed XE "changed" with parameter tag XE "parameter tag" .</msg0:>

<msg4:> Message 4 has changed XE "changed" with parameter tag XE "parameter tag" too.</msg4:>

</more-messages>

[image: image96.png]Four Tables, No Waiting

Recipes || Categories || Countries

Welcome to Four Tables, No Waiting

Congratulations! Your Hobo Rails App is up and running

 This i the first messsage.
 This is the seond message.
 This is the third message passed as a parameter.

 Message 0 changed with parameter taz.

Message 1
Message 2 Changed

Message 3

Message 4 has changed with paramter tag too.
No Parameter Here

sstuff
More stuff

Figure 103: More parameter magic

Tutorial 12 – Rapid, DRYML XE "DRYML" and Record Collections XE "Record Collections"
You will learn how to XE "to" create a new index page that will replace the default index page that Hobo XE "Hobo" generates on the fly, and learn how to display data on this index page that is XE "is" related through a many-to-many relationship.

Tutorial Application: four_table

Topics

· Learn how to XE "to" create your own index template in a view/model directory.
· Work on using the application.dryml XE "application.dryml" directory to XE "to" override auto-generated XE "auto-generated" tags.
· Learn about the Rapid collection XE "collection" tag.
· Get introduced to XE "to" the Rapid <a> tag.
· Learn how to XE "to" use the <repeat>, <if> and <else> tags.
Steps

1.
Click the model(Recipes) tab. Load your browser again with the Four Table application we ended up with in Tutorial 11. Click the Recipes tag to XE "to" remind yourself how Hobo XE "Hobo" automatically creates a list of your recipes. This is XE "is" different than the Home tab you were working with in Tutorial 11. When you click the Recipes tab, Hobo goes through the three-step check you learned about in Tutorial 1 to locate a template or template definition.

Since we have already moved the <index-page> tag for recipes to XE "to" \taglibs XE "taglibs" \application.dryml XE "application.dryml" , Hobo XE "Hobo" will obtain its tag definition for generation of a view template here.

Reminder Note. You learned back in Tutorial 1 that each of Hobo XE "Hobo" ’s tabs, named with the plural XE "plural" of the model name XE "name" by default, invoke the index action XE "action" and list the records in the model.

Since there is XE "is" not a file called views\recipes\index.dryml XE "index.dryml" , Hobo XE "Hobo" will create its own template on-the-fly from the <index-page> tag definition in \taglibs XE "taglibs" \application.dryml XE "application.dryml" . (We created a views\recipes\index.dryml in Step 1 but we asked you to XE "to" remove it. If you did not do that, do it now so you do not have any conflicts as we proceed).

[image: image97.png](NG el Loggedinas Admin Account Logout

Four Tables, No Waiting

Categories || Countries

My Recipes
Thers are 3 Resipes
New Recipe

Barbecued Chicken Wings
2 Category Assignments

Omelet
1 Category Assiznment

Hamburger
0 Category Assignments

1. Create XE "Create" a new template file. Now, create the new file called index.dryml XE "index.dryml" in the views/recipes folder. This is XE "is" the folder automatically created when you did the hobo_migration XE "hobo_migration"

 XE "migration" _resource generation in Tutorial 1. This file is called a DRYML XE "DRYML" template.

Vocabulary note. We have used the word template quite frequently now but it is XE "is" still worth reminding you not to XE "to" be confused by it. It is a file used to render a specific web page, not a framework for creating one as the word may imply.

Now that this file exists, Hobo XE "Hobo" will use it when it finds it so let’s put a tag in it to XE "to" make sure Hobo has a template to render.

<index-page/>

[image: image98.png]blelapplviews\recipestindex. dryml - e
Text Navigation Bundes Help

Project B indendryml G
5 four tabe A1 1 Jcandex-pagess|
=

£ controlers e
© hepers

) moceks
) viewhits 1
5 views
© categories
) courtries
&0 front
[8) inder.cryml
& byouts
= 53 recpes
() inder.cryml
5 2 taglbs
EI=YTy
£ 6 repid

cards.dryml
Forms.dryml
pages.dryml

5 £ themes
© cean

() appication.cryml
£ user_maer

5 users

G -

Fie Edt

Refresh your browser. It should look just like it did in Step 1. This is XE "is" because <index-page> is exactly the tag that Hobo XE "Hobo" is calling to XE "to" display this page. Instead of doing it automatically, you have added one step. Before, since there was no file in views\recipes, Hobo created its own version of the page using this tag. Now it looks in the folder, finds the index.dryml XE "index.dryml" file and does what it would have done anyways, namely use the <index-page> tag.

3.
Work with the <collection XE "collection" > tag. From here on in this tutorial we will be moving back and forth between the template views/recipes/index.dryml XE "index.dryml" and the <index-page> definition in views\taglibs XE "taglibs" \application.dryml XE "application.dryml" . Keep this in mind so you do not get confused.

Go to XE "to" the application.dryml XE "application.dryml" and find the <index-page> tag definition for the Recipe model. Note the <collection XE "collection" > tag in italics and bold below.

<def tag="index-page" for="Recipe">

 <page merge title="Recipes">

 <body XE "body" : class="index-page recipe" param XE "param" />

 <content XE "content" : param XE "param" >

 <header XE "header" param XE "param" ="content-header XE "content-header" ">

 <h2 param XE "param" ="heading XE "heading" ">Recipes</h2>

 <p param XE "param" ="count" if>There <count prefix="are"/></p>

 </header XE "header" >

 <section param XE "param" ="content-body XE "content-body" ">

 <a action XE "action" ="new" to XE "to" ="&model" param XE "param" ="new-link"/>

 <page-nav XE "page-nav" param XE "param" ="top-page-nav"/>

 <collection XE "collection" param XE "param" />

 <page-nav XE "page-nav" param XE "param" ="bottom-page-nav"/>

 </section>

 </content XE "content" :>

 </page>

</def>

To remind yourself that this is XE "is" the tag responsible for listing the recipe records, delete it and refresh your browser. You will still see a template rendered but without the list of recipes. OK, now let’s put back the <collection XE "collection" > tag so that your file still reads like the above code.

Now let’s move back to XE "to" the views/recipes/index.dryml XE "index.dryml" template and explicitly call the collection XE "collection" tag. Change your code to read like this:

<index-page>

<collection XE "collection" :/>

</index-page>

Your Recipes template should still look exactly like the one in Step 1.

You are now calling the <collection XE "collection" > tag. Notice the trailing colon (:). This colon is XE "is" here because you are calling a parameter tag XE "parameter tag" . You can see above that the <collection> tag was parameterized in application.dryml XE "application.dryml" by adding the param XE "param" attribute XE "attribute" to XE "to" the declaration. You might be wondering where the <collection> tag is defined.

Actually, it is XE "is" a member of the Rapid library of tags that we have mentioned. As we go through these tutorials, we will point out where tags, and in particular parameters tags come from. Here is a list of tag situations you will encounter:

· HTML XE "HTML" tags which are often parameterized
· Rapid library tags which are often parameterized
· Rapid parameter tag XE "parameter tag" s, not defined in your app
· User-defined tags which are often parameterized
· Rapid auto-generated XE "auto-generated" tags which are not usually parameterized
As we go forward, you will gradually learn how the auto-generated XE "auto-generated" tags are built up out of Rapid library tags.

OK, let’s learn a little more about the <collection XE "collection" > tag. The <collection> tag does the following:

· Repeats the body XE "body" (stuff between the tags) of the tag inside a <ul XE "ul" > list with one item for each object in the collection XE "collection" of records.
· If there is XE "is" no content XE "content" for the body XE "body" , it renders a <card XE "card" > inside the tag nested within the <ul XE "ul" > tags.
The following code corresponds to XE "to" "no body XE "body" ":

<collection XE "collection" :/>

and this code corresponds to XE "to" an empty or blank body XE "body" :

<collection XE "collection" :></collection:>

You have already seen what the former will do, namely list your records in a bolded hyperlinked format XE "format" which it derives from the <card XE "card" > tag. Now try the latter. You will get the blank repeated as many times as there are recipe records, that is XE "is" , nothing.

[image: image99.png]File Edt View Text Navigation Bundles Help

Project

| Dlindendrymi @ | Dessbtonaynl |
9 four_table index-page>
=0 e <collection:> </collection:>
& 3 controlers </indesc-page>
@ 2 heers
@ 2 models
&) viewhints
&0 views
) cateqories
) countrie
= front Recipes : Four Tables, No Waiting - Mozilla Firefox

[9) e
Bl Edt Uew Hatory fookmarks Took el
12 lavouts | = = = = = = =

aegwm W C % G (D) rewiscahostsooorecpes

= 3 teaibs

Four Tables, No Waiting

Categories || Countries

o My Recipes

w0k There are 3 Recipes
& doc
=13
Qs

5 publc
5 seript
O test

ines 3 Column: 14

Figure 106: page view of using a blank "<collection XE "collection" :></collection:>" tag

Now try the following code.

<collection XE "collection" :>Hello!</collection:>

Since there is XE "is" a body XE "body" , the ‘Hello!’ will be repeated and the <card XE "card" > will no longer be called.

[image: image100.png]Flo i Viow Toxt Navigaton sundes. Felp
ot | Dindemarymt | Jspestoncn (1| .
13 four_table a8 1C]<index-page>
= e 2 <collection:>Hello! </collection:>

& 3 controllrs 3 Ll/index-page>

/5 helpers

®
agﬂler,i\,a:hm Tables, No Waiting - Mozilla Fir

=g

ISy
=0
=T
EI=Y
200

Ele Edt View Hstory Bookmarks Ioos Help

€ X ()] hepiocahost:3000jrecpes

v¢ -] [Gl:[cooge

Guest

My Recipes

There are 3 Recipes

Hella!
Hella!
Hella!

There are three records in our Recipes table so ‘Hello!’ is XE "is" repeated three times. If you examine your page a little more in detail by hovering your mouse over the ‘Hello’s’, you will see that each is linked to XE "to" different records and has a different route associated with it.

Now let’s get some content XE "content" displayed. We are going to XE "to" use Rapid’s <a> tag which is XE "is" similar to the HTML XE "HTML" <a> tag but has been redefined. The <a> tag is extended in Rapid to automatically provide a hyperlink to the route to show a particular record of the model. Let’s try this out with the following code.

<collection XE "collection" :><a/></collection:>

[image: image101.png]File Edt Vew Tet Nevigation Bundes Help

Project = desedryml 3 | | applcationdryml)
£ four table A|1 iEfcindex-page>
= 2[| " <collectioni><a/>/collectiont>
® 3 controlers 3 Lc/index-page>
: Four Tables, No Waiting - Mozilla Firefox

Edt Vew Hgory fooknarks Iools tep

C G ([[hepiitecahost:snojreces

Four Tables, No Waiting

My Recipes

There are 3 Recipes

Barbecued Chicken Wings

=g

Omelet
=g Hamb
o) amburger

e e e e o
o

If you mouse over or click on one of the links you will discover a route like this

http://localhost:3000/recipes/2-omelette

The <a> link has created this route, which is XE "is" the route for a show action XE "action" .

Let’s do a comparison with the <card XE "card" > tag that Hobo XE "Hobo" would call if you were not overriding it. Here is XE "is" the <card> tag definition.

<def tag="card XE "card" " for="Recipe">

 <card XE "card" class="recipe" param XE "param" ="default" merge>

 <header XE "header" : param XE "param" >

 <h4 param XE "param" ="heading XE "heading" "><a><name XE "name" /></h4>
 </header XE "header" :>

 <body XE "body" : param XE "param" >

 <count:categories param XE "param" />

 </body XE "body" :>

 </card XE "card" >

</def>

The <card XE "card" > tag uses an <h4> heading XE "heading" tag which bolds and applies a larger font according to XE "to" Hobo XE "Hobo" ’s CSS XE "CSS" files. It also uses the <a> tag with a body XE "body" provided by the <name XE "name" > tag, which renders the field that Hobo figures out automatically to be the most likely field you want to display. The <name> tag will pick out field names such as title, for example, which is XE "is" the name of the field in our Recipe model.

If you wish to XE "to" explicitly display a different field other than the one that Hobo XE "Hobo" provides by default, you can use the Rapid <view> tag. The syntax for this tag is XE "is" different than you have encountered so far. Right now we are just going to give you a simplified description of the syntax and postpone a more detailed discussion for a later chapter:

<index-page>

<collection XE "collection" :><view:title/></collection:>

</index-page><collection XE "collection" :><view:title/></collection:>

Syntax note. You will observe the trailing colon (:) with the <view> tag. This is XE "is" an entirely different use of colon (:) than you have seen with parameter tag XE "parameter tag" s. Here the colon (:) is telling Hobo XE "Hobo" to XE "to" figure out what model you are referring to and display the field from that particular model. This called implicit XE "implicit" context XE "implicit context" , Hobo’s ability to know at all times what model you are working with in a particular view. In a later chapter you will learn how to change the implicit context XE "context" .

If you refresh your browser, you will note that the recipes displayed are not clickable. That is XE "is" because of the way that the <collection XE "collection" > tag works. Remember that when you add a body XE "body" to XE "to" the tag, it no longer uses the <card XE "card" > tag so you are only asking Hobo XE "Hobo" to display the title field, not create a hyperlink. That is easily remedied by doing the following.

Refresh your browser and see what you’ve got now:

[image: image102.png]€ C:Mutorials\four_table\app\views\recipes\index.dryml - e
FieEdt TextNavigation Bundes _Help

ot | Dindesdrymi |) sppcaton o (4

5 four_table |<index-page>

=0 <collection:><a><viev: title/></ax</col lection:>
@ controllers < /index-page>
3 helpers
@3 models Recipes : Four Tables, No Waiting - Mozilla Firefox

& 3 viewhits
S vews fle Edt Vew Hgory fookmatks ook el

Qumee @B € X & ([rwimstomsmiens

o TR
7 E(g - cdmin@barguin.com ¥

2 layouts

izl Four Tables, No Waiting

£ tagibs

Categories || Countries

=5 themes My Recipes

& £ cean
[9) appication.cry
& £ user_maier

There are 3 Recipes

c@un e Recpe
w0k Barbecued Chicken Wings
& doc Omelet.
=0 Hamburger
5 log

&) public

This looks pretty close to XE "to" the default version of the <collection XE "collection" > tag. With the following use of the <h4> HTML XE "HTML" tag, you can almost bring back the default appearance.

<index-page>

<collection XE "collection" :><h4><a><view:title/></h4></collection:>

</index-page>

The only difference is XE "is" the background provided to XE "to" the record that you see above in Step 1 and the lack of the category count. The background is Hobo XE "Hobo" ’s default CSS XE "CSS" formatting which in this case is associated with the <card XE "card" > tag and since you are not using it, the formatting does not appear. Understanding how Hobo utilizes CSS files is covered in a later Chapter.

[image: image103.png]€ C:\utorials\four_tablelapp\views\recipes\index.drym! - e

File Edt Vew Tet Nevigation Bundes Help

Project 8| Qindendryml 3|) spplcationdeynl (0

D four_table |1 iEjcindex-page>

=0 <collection: ><ha><a><view: title/></@></hd></Col lection:>
& £ controlers < /index-page>
3 helpers
() models Recipes : Four Tables, No Waiting - Mozilla Firefox
3 viewhits Ble Edt Vew Hory Booknarks Lo e

=5 views
) categores ° o ocahostio000iecies
S EY- C % G ()] mpisocshostaoooirecs
=5 front
[9) indesdrym
& lavouts

5.8 reees Four Tables, No Waiting

[9) indes.cryml
& £ tagibs

admin@barguin com ¥

Countries

Categories

5 £ themes My Recipes
@5 dean There are 3 Recipes
[9) appication.cryml
5 £ user_maier
O users
5 New Recipe
#Ddb Barbecued Chicken Wings
& doc
=ty Omelet
& 5 s Hamburger

5 publc
& (5 sernt
o test

4.
Display associated record collection XE "associated record collection"

 XE "collection" . Now that you see how to XE "to" display collections of record XE "display collections of record" s, let’s go a bit deeper. Our Recipe model has a many-to-many relationship with the Category Model. It would be nice to see this relationship without having to click through to an individual recipe.

You can do this in several different ways. First we will do it in views/recipes/index.dryml XE "index.dryml" template. Then we will try it in a <card XE "card" > definition in application.dryml XE "application.dryml" . Try out the following code.

<index-page>

<collection XE "collection" :><h4><a><view:title/></h4>

<view:categories/>

</collection XE "collection" :>

</index-page>

[image: image104.png][Fie Edi vew Ted Nevigation Bundes Help
Project a|
3 four_table A
=@ <collection:><hd><a»<view: title/></hd>

& controllers <view:categories/>

& 5 heloers </collectio

@ models 5 U</index-page>
& 3 viewhits
8 vews Recipes : Four Tables, No Waiting - Mozilla Firefox

) categories Fle Edt Vew Hgory fookmarks ook Help

© countries
& o ° G % G ()] rwitocabostsoosjreces

(0] index.chymi

& layouts admin@barguincom v
= 3 recpes
[8) inder.chyml

B Four Tables, No Waiting

a

% -]

(S Categories || Countries

& 3 themes

o Bimm|| My Recipes

& () ser_maier There are 3 Recipes
) users
& £ config
=13 New Recipe
& 5 doc
EDb Barbecued Chicken Wings

Qs sweet, hot

) puble
5 seript Omelet

&0 test hot

Hamburger
fnone)

What we did here with the <view> tag was to XE "to" tell Hobo XE "Hobo" to change its implicit XE "implicit" context XE "implicit context"

 XE "context" to the Categories model. The colon(:) is XE "is" what did the trick and, of course, all the machinery inside Hobo which keeps it informed about the relationship between models that we set up.

Now we are going to XE "to" do this slightly differently by using another Rapid library tag called <repeat>.
<index-page>

<collection XE "collection" :><h4><a><view:title/></h4>

<repeat:categories><a/></repeat>

</collection XE "collection" :>

</index-page>

The repeat tag XE "repeat tag" with the colon (:) tells Hobo XE "Hobo" to XE "to" loop through the records in the implicit XE "implicit" context XE "implicit context"

 XE "context" and to display what is XE "is" in the body XE "body" of the tag, namely <a/>. Try it and you will see the categories as hyperlinks but all run together. Fortunately, <repeat> has a join XE "join" attribute XE "attribute" to put in some additional character punctuation. Try this.

<index-page>

<collection XE "collection" :><h4><a><view:title/></h4>

<repeat:categories join XE "join" =", "><a/></repeat>

</collection XE "collection" :>

</index-page>

Now you get this.

[image: image105.png][Fi= e view [N Nevigation Bundles Help

Project 5[[indesdrymi |) appcationdryml -
4] 53 four tatle A|1 iEfcindex-page>
= 2]| " <coliectiont>na<arcvien: title/se/ e/
& 3 controlers || <repeat:categories join", "><a/></repeat>
[0 helpers af| <eorreceions>
& 5 models 5 L</index-page>
| =5 vewnng
Eﬁ;ws @
g ca
Fle Edt Vew Hgory ooknaks ook ek
Doy P B M W & e
& fro 5 G
B 0- 3 Gy (1) | psiocaostsooiecpes % -] [Eceore
| Qe admin@barguin.com
F = rec £l
| F Tables, No Waiti
{ 8 our l1ables, NO ¥vaiting
i &
o R oo | comies
\
! =2
¢ & .
B My Recipes
6 use Thers are 3 Recipes
D use
(3 config ' Element Properties
EO®
48 New Recipe Likeropertes
a 321‘2 Barbecued Chicken Wings address; httpi/flocalhosti3000/categories/ 1-swest
b sueed will openin: Same window
() public P
& 5 sopt Omelet
B 5D test =
s

—

Hambureer

If you don’t want to XE "to" have your categories linked you could do this,

<index-page>

<collection XE "collection" :><h4><a><view:title/></h4>

<repeat:categories join XE "join" =", "><name XE "name" /></repeat>

</collection XE "collection" :>

</index-page>

or you could do this.

<index-page>

<collection XE "collection" :><h4><a><view:title/></h4>

<repeat:categories join XE "join" =", "><view:name XE "name" /></repeat>

</collection XE "collection" :>

</index-page>

Programming note. The <name XE "name" /> tag and the name attribute XE "attribute" in <view:name/> are not the same. In the former, Hobo XE "Hobo" looks at the Category model to XE "to" find a candidate field to output from the <name> tag. We made it easy for Hobo since there is XE "is" a field called name which it picks and displays. In the second example, we explicitly tell Hobo to display the name field of the categories model.

Now we are going to XE "to" try the same thing within a tag definition so put your template, views/recipes/index.dryml XE "index.dryml" back to the following:

<index-page/>

Now go into application.dryml XE "application.dryml" and find the recipe <card XE "card" > definition. It should be there from Tutorial 1. If it is XE "is" not there copy it from views\taglibs XE "taglibs" \auto\rapid\cards.dryml XE "cards.dryml" . Edit it to XE "to" look like the below; note the added code in italics and bold. We have added the same code we put in the template above. Since the code is now in the <card> tag definition, we should get all the formatting set up pre-defined in Hobo XE "Hobo" .

<def tag="card XE "card" " for="Recipe">

 <card XE "card" class="recipe" param XE "param" ="default" merge>

 <header XE "header" : param XE "param" >

 <h4 param XE "param" ="heading XE "heading" "><a><name XE "name" /></h4>

 </header XE "header" :>

 <body XE "body" : param XE "param" >

 <count:categories param XE "param" />

<view:categories/>

 </body XE "body" :>

 </card XE "card" >

</def>

Refresh your browser.

[image: image106.png]€ C:\utorials\four_tablelapp\views\recipes\index.drym! - e

Fie Edt Vew Tedt

Navigation_Bundles

Help

Project

£ four table
=y
& £ controlers
& (5 hepers
& (5 modeks
& (5 viewhits
& 5 views
5 categories
S countries
& Front
[9) indes.cryml
& layouss

Recipes

Fle Edt Vew Hstory Bookmarks Took

<header: paran>
</header:>
<body: paraw>

</poay:>
</oara>
12 Lcsder>

Four, Tables, No Waiting - Mozilla Firefox

Help

€ X ()] hepiocahost:3000jrecpes

Categories

My Recipes

There are 3 Recipes

New Recipe

Barbecued Chicken Wings
2 Categories
sweet, hot

Omelet
1 Category
hot

Countries

<card class="recipe” paran=default’ merge>

<B4 paran="heading"><a><nane/></hd>

Now you have succeeded in editing the recipe <card XE "card" > tag to XE "to" drill down to assigned categories for your recipes.

5.
Use the <if> and <else> tags. We are going to XE "to" show you one more version way of displaying the recipe records and the categories assigned to them. Notice that when there are no categories assigned, the <view> tag puts out the text, ‘none’. Let’s try to make this look a little nicer.

The <if> tag checks for null records in a record collection XE "collection" and outputs the body XE "body" of the tag when the record exists. You use the <else> tag for the case when the record does not exist. Try this.

<def tag="card XE "card" " for="Recipe">

 <card XE "card" class="recipe" param XE "param" ="default" merge>

 <header XE "header" : param XE "param" >

 <h4 param XE "param" ="heading XE "heading" "><a><name XE "name" /></h4>

 </header XE "header" :>

 <body XE "body" : param XE "param" >

 <if:categories><view/></if>

 <else>There are no assigned categories yet.</else>

 </body XE "body" :>

 </card XE "card" >

</def>

[image: image107.png]:Mutorials\four_tablelapplviews\recipestindex. dryml - &
Fie Edt View Text Navigation Bundes Help

[Dimdenseyms &

S four bl 1 [cinaex-page/>
EL=Y) 25jcaet tagrosca” for-Recipe'>

& 0 contralers recipe” paran-default” merges

& (5 hepers <header: paran>

& (5 models <hd paren-"heading"><a><nane/></@></hd>
&) viewhints </header:>

& 5 views

) cateqories
) countries

Recipes : Four, Tables, No Waiting - Mozilla Firefox
Ele Edt View Hstory Bookmarks Ioos Help

OB ¢ % & (Ol

Four Tables, No Waiting

Categories || Countries
|

My Recipes
Thers are 3 Resipes
New Recipe

Barbecued Chicken Wings
sweet, hot

B

Omelet
hot

Hamburger
There ore no assigned categoriss yet.

In the examples above, we used the trailing colon (:) syntax XE "trailing colon (:) syntax" to XE "to" tell Hobo XE "Hobo" what model context XE "context" we wanted in the <view> or <repeat> tags. In this example, we take care of changing the context with the <if> tag so there is XE "is" no need to do it again. In fact, if we introduced this redundancy, as in the code below, we would get an error:

<!--THIS CODE PRODUCES AN ERROR-->

<if:categories><view:categories/></if>

<else>There are no assigned categories yet.</else>

Tutorial 13 – Listing Data in Table Form XE "Listing Data in Table Form"
You will learn how to XE "to" display your data in a sortable, searchable table. The search XE "search" will actually extend beyond the table entries to all the fields of each record. The sort and search code is XE "is" an advanced topic that is provided here for completeness.

Tutorial Application: four_table

Topics

· Display model data in table form XE "Display model data in table form"

 XE "form" .
· Use the replace attribute XE "attribute" to XE "to" change the content XE "content" of a parameter tag XE "parameter tag" .
· Display associated record counts in the table
· Add search XE "search" and sort to XE "to" the table.
Steps

1.
Display model in table form XE "form" . In the following code, we use another built in feature of Hobo XE "Hobo" ’s parameter tag XE "parameter tag" s, the ability to XE "to" replace what the parameter does with new tag code. The code below should be entered into your views/recipes/index.dryml XE "index.dryml" file. Delete XE "Delete" or comment out the <index-page> tag from Tutorial 12.

<index-page >

<collection XE "collection" : replace>

<div>

 <table-plus fields="title,country"/>

 </div>

 </collection XE "collection" :>

</index-page>
Refresh your browser to XE "to" see your new table:

[image: image108.png]| € C:\utorials\four_tablelapplviews\recipes\index.drym! - e
Fie Edt View Text Navigation Bundes Help

Project 8[| [indexdeyml
) four_table A iEcinaex-page >

B <collection: replace>
® 3 controlers divs

& 3 helers <table-plus fields="citle,comntry”/>
® (3 models </div>

& 3 viewhits </collection:>
&3 views 7 U</ index-page>

Recipes : Four, Tables, No Waiting - Mozilla Firefox
Ele Edt View Hstory Bookmarks Ioos Help

O - C % b (Do

admin@barguin com ¥

Four Tables, No Waiting

LZIT Categories || Countries

My Recipes

There are 4 Recipes

New Recipe

P — . |

Barbecued Chicken Wings American

Omelet American

Hamburger American

French Fries French

The fields attribute XE "attribute" of the <table-plus> tag lets you specify a list of fields that will become the columns of a table.

So essentially one line of code sets up a pretty good table for you in Hobo XE "Hobo" .

2.
Make your data hyperlinked. You might have noticed that the country names are clickable but the titles are not. Hobo XE "Hobo" provides a way to XE "to" do this using the this keyword. This refers to the object currently in scope.

Programming note. The this keyword actually has a far deeper meaning that will be explored in more depth later. For now we will just outline how to XE "to" use it.

Make the following change to XE "to" your code and refresh your browser.

<index-page >

<collection XE "collection" : replace>

<div>

 <table-plus fields="this, country"/>

 </div>

 </collection XE "collection" :>

</index-page>
Now your recipes are hyperlinked to XE "to" the show route that displays individual recipe records.

3.
Show associated record counts. It would be nice to XE "to" display how many associated category records there are. Again, since Hobo XE "Hobo" knows all about the relationships between records, you know it can figure this out.

However, if you are familiar with database programming, you know queries have to XE "to" be done to compute this value. The Hobo XE "Hobo" framework does not require you to do this extra work. You already know what you want--so you should be able to declare it. Here is XE "is" how you do it:

<index-page >

<collection XE "collection" : replace>

<div>

<table-plus fields="this, categories.count, country"/>

 </div>

 </collection XE "collection" :>

</index-page>
[image: image109.png]€ C:\utorials\four_tablelapp\views\recipes\index.drym! - e

File Edt Vew Tet Nevigation Bundes Help

Project 8[| [indexdeyml

£ four table A1 Lbfcindenpage >

By <collection: replace
& £ controlers <div
& (5 hepers <table-plus fields="this, CALEYOTIESiCOWNE, cowitry'/>
() models <vain
& (5 viewhits </eollections>

5 views 7 U</ index-page>
2 cotegories

+ Four Tables, No Waiting - Mozilla Firefox

Edt Vew Hgory fooknarks Iools tep

O - ¢ X & (O leieotmomiesporemimromn

aclmin@b:

Four Tables, No Waiting

LZIT Categories || Countries

My Recipes

There are 4 Recipes

New Recipe

Search [French

French Fries 1 French

That was pretty straightforward. Before we refresh our browser again, let’s also display the actual categories in addition to XE "to" the count.

Again, with other frameworks this would be a bit more complicated, but Hobo XE "Hobo" makes this easy. In the previous tutorial, you learned a few ways to XE "to" display the categories associated with an individual recipe, the simplest of which was the <view> tag.

Here it is XE "is" even easier--just add categories to XE "to" the fields attribute XE "attribute" :
<index-page >

<collection XE "collection" : replace>

<div>

<table-plus fields="this, categories.count, categories, country"/>

 </div>

 </collection XE "collection" :>

</index-page>

[image: image110.png]Mutorials\four_table\appiviews\recipeslindex. dryml - e
Fie Edt View Text Navigation Bundes Help

Project
5 four_table
=@ <collection: replace>

& 3 controlers <div>

@ helpers <table-plus fields="this, categories.count, categories, cowntry”/>

() models </aivs

&) viewhints <Jcollection:>

5 views 7 Li</index-page>

Recipes : Four, Tables, No Waiting - Mozilla Firefox
Ele Edt View Hstory Bookmarks Ioos Help

O - ¢ X & (O leieotmomiesporemimromn

Four Tables, No Waiting

LZIT Categories || Countries

My Recipes

There are 4 Recipes

New Recipe
Search [French | [

Recipe Categories Country

Barbecued Chicken Wings 8 sweet, hot American

Omelet 1 hot American

Hamburger 0 (none) American

French Fries 1 salty French

4. Add search XE "search" and sort capability to XE "to" the table. Until now we have worked with controllers relatively little. If you think about it a bit, you will quickly realize that to add search and sort, we will have to make a change in the recipe controller. You can understand this by realizing that we want our application to respond to a click with two specific actions XE "actions" : one is XE "is" a sort and the other is a search.

Go to XE "to" your controllers/recipes_controller.rb file.

Programming note. This is XE "is" actually an advanced topic since we are adding some Ruby code. You will learn more about the meaning of all the unfamiliar syntax in subsequent chapters.. But for now, let’s polish off this table functionality.

To get the search XE "search" feature working, we need to XE "to" update XE "update" the controller side. Add an index method XE "method" to app/controllers/recipes_controller.rb like this:

def index XE "def index"
 hobo_index Recipe.apply_scopes(:search XE "search" => [params XE "params" [:search],:title,:body XE "body"], :order XE "order" _by XE "order_by" => parse_sort_param XE "parse_sort_param"

 XE "param" (:title, :country, :count))

end

Note that the “apply scopes” for the search XE "search" facility can only contain fields within the recipe model—not related models at this time, but the “order XE "order" by” can.

Clicking on the Country label XE "label" twice will trigger sorting in descending alphabetical order XE "order" :

[image: image111.png]admin@barguin com ¥

Four Tables, No Waiting

Recipes. Categories l Countries

My Recipes
There are 4 Recipes
Sorted by Country, descending...

New Recipe

[

Cotegoros Count Cotegores Comntry |
French Fries 1 saty French
Barbecued Chicken Wings 2 sweet, hot American
Omelet 1 hot American
Hamburger 0

fnone) American

Now search XE "search" /filter by “French” in the title or body XE "body" :

[image: image112.png]Ble Edt Vew Bookmarks Tooks Help

(I R e e | T 7

Four Tables, No Waiting

Categories || Countries

My Recipes

There s 1 Recipe

New Recipe

Search French =

Country |

Categories Count

French Fries 1 salty French

Tutorial 14 – Working with the Show Page XE "Show Page" Tag XE "Working with the Show Page Tag"

 XE "Show Page Tag"
In this tutorial you will learn the options XE "options" for displaying details about single records. In the last two tutorials, we focused on displaying lists of records. Hobo XE "Hobo" has a specific auto-generated XE "auto-generated" tag for handling the display of individual records and a route and view template associated with it.

Tutorial Application: four_table

Topics

· Edit the <show-page> tag.
· Create and work with the show.dryml XE "show.dryml" template.
· Work with <field-list XE "field-list" >, <fieldname-label> and <view> tags.
Steps

1.
Copy the <show-page> tag. Go to XE "to" pages.dryml XE "pages.dryml" and copy the <show-page> tag for Recipes to application.dryml XE "application.dryml" .

<def tag="show-page" for="Recipe">

 <page merge title="Recipe">

 <body XE "body" : class="show-page recipe" param XE "param" />

 <content XE "content" : param XE "param" >

 <header XE "header" param XE "param" ="content-header XE "content-header" ">

 <h2 param XE "param" ="heading XE "heading" "><name XE "name" /></h2>

 <field-names-where-true fields="" param XE "param" />

 <a action XE "action" ="edit" if="&can_edit? XE "can_edit?" " param XE "param" ="edit-link XE "edit-link" ">Edit Recipe

 </header XE "header" >

 <section param XE "param" ="content-body XE "content-body" ">

 <view:body XE "body" param XE "param" ="description"/>

 <field-list XE "field-list" fields="country" param XE "param" />

 <section param XE "param" ="collection-section">

 <h3 param XE "param" ="collection-heading">Categories</h3>

 <collection XE "collection" :categories param XE "param" />

 </section>

 </section>

 </content XE "content" :>

 </page>

</def>

We are going to XE "to" focus in on three display components of this tag, noted in bold italics above, to help you understand how to change the display of individual records.

Click on the Recipes tab and then click on an individual recipe.

[image: image113.png]Four Tables, No Waiting

Home || Recipes [| Categories [| Countries

Omelet Edit Recipe

3 ezas
cheddar cheese
butter

Country American

Category Assignments

hot
2 Category Assignments

sour

1 Category Assiznment

Now comment out the three lines above in bold italics using <!-- ... -->, and confirm that you have removed the display of the individual recipe record.

2.
Create XE "Create" the show.dryml XE "show.dryml" template. Go to XE "to" views/recipes and create a new template file called show.dryml. When a user invokes the show action XE "action" by requesting the display of a single record, this is XE "is" the first of the three places Hobo XE "Hobo" looks to determine how to display the record.

As with the index action XE "action" , its next two stops are the application.dryml XE "application.dryml" file to XE "to" look for application wide tag definitions and finally in pages.dryml XE "pages.dryml" for the auto-generated XE "auto-generated" tag definitions which are based on model and controller code.

Place the following code in show.dryml XE "show.dryml" to XE "to" invoke your show page.

<show-page/>

Refresh your browser and you should see the following:

[image: image114.png]Four Tables, No Waiting

Home I Recipes I Par— I pa—

Omelet Edit Recipe

Category Assignments

3.
Use the <field-list XE "field-list" > tag. The <field-list> tag allows you to XE "to" display rows of data in two columns. The first column contains the name XE "name" of the field and the second column contains the contents of that field. The <field-list> tag has been parameterized in the <show-page> tag so we need to invoke it with a trailing colon (:).

Remove the comments around the <field-list XE "field-list" > tag in application.dryml XE "application.dryml" and try the following in show.dryml XE "show.dryml" .

<show-page>

<field-list XE "field-list" : fields = "body XE "body" , country"/>

</show-page>

Here you are using the attribute XE "attribute" fields to XE "to" declare which fields in your model you wish to display.

[image: image115.png]Four Tables, No Wai

Home || Recipes [| Categories [| Countries

Omelet Edit Recipe
Body 3 ezas

cheddar cheese

butter
Country American

Category Assignments

Hobo XE "Hobo" can even reach into the associated table and display the categories using <field-list XE "field-list" >. Try this.

<show-page>

<field-list XE "field-list" : fields = "body XE "body" , country, categories"/>

</show-page>

You can remove the collection XE "collection" heading XE "heading" since you no longer need it by observing that the <show-page> tag has a parameterized <h3> tag renamed as the <collection-heading:> parameter tag XE "parameter tag" . You will see the following code in the <show-page> definition.

<h3 param XE "param" ="collection-heading">Categories</h3>

Now go into your show.dryml XE "show.dryml" file and replace the default contents of the tag with nothing.

<show-page>

<field-list XE "field-list" : fields = "body XE "body" , country, categories"/>

<collection-heading:></collection-heading:>

</show-page>

Now you should have the following after refreshing your browser.

[image: image116.png]Guest v

Four Tables, No Waiting

Home Recipes Categories [
| | | | | |

@ C:\utorialsMour_tablelapp\views\recipes\show. drym - e

Omelet Fle Edt Vew Text Nevigation Bundes Help
Project
5 four_table AN 1bshou-page>
=0 2[| <riela-1ist: fields = "body, comntry, categories/s
Eoay) 3egas @ controllers 3 <collection-heading:></collection-heading:>
cheddar cheese 3 helpers |
butter & models s
&) viewhints G
Country American 55 views 7
% £ countries &
Categories hot, sour & front 3
= 53 recpes ®
) index.dryml n
5 show.deyml]Iz
5 2 taglbs 5
5 ao 2
5 themes =
eppication.cryml b

Changing the <field-list XE "field-list" > labels. We can now see that the <field-list> tag does a nice job of formatting the display of the fields of a record. The default display pictured in Step 1 uses a combination of the <view> and <field-list> tags. However the <view> tag does not automatically provide a label XE "label" like the <field-list> tag. We will cover this further in Step 5. Now let’s learn how to XE "to" change the labels.

Try the following code to XE "to" change the body XE "body" label XE "label" to ‘Recipe’.

<show-page>

<collection-heading:></collection-heading:>

 <field-list XE "field-list" : fields = "body XE "body" , country, categories">

</field-list XE "field-list" >

 <body-label:>Recipe</body-label:>

<show-page>

[image: image117.png]Ele Edt View Hstory Bookmarks Ioos Help

@ - C % b (O oo

Four Tables, No Waiting

Home || Recipes [| Categories [| Countries
| | |

3 ezas
cheddar cheese
butter

Country American

Categories hot, sour

C:MutorialsMour_tablelapp\views\recipes\show. dryml - e
e Edi Vien Text Nevigetion Bundes Hel

- 8] [<] 3 shomarymi @ | Clrecoss.conroers>_ 3| (Y ndoxchym | Ulpagssyni 3| Olrecbord (>
#{3) viewhints L} 1E]<show-page>
3 caegories K Crield-Lise: Tleids - "body, comtry, cavegories”s
S countries . hody-1abel >Resipec/body-1abel>
=3 front 5 </field-list>
[8) inder.cryml .
@ layouts 7 </smov-page>
=5 recipes i
o) .l 5
= e tegks o
EI=YTy 12
S8 rapid 13
sy)
carasem 1

There are a few new things going on here that you have not seen before.

· The <body-label:> tag is XE "is" a parameter tag XE "parameter tag" defined in the Rapid Library.
· The <body-label:> tag is XE "is" a user customized Rapid library tag derived from the generic <fieldname-label> tag.
· The <body-label:> tag is XE "is" nested within the <field-list XE "field-list" > tag.
Let’s go through these points one at a time.

Rapid Parameter Tag XE "Rapid Parameter Tag" . Note that the tag is XE "is" used with a trailing colon (:), meaning that <body-label:> is a parameter tag XE "parameter tag" . However, it is not defined anywhere within either your code or the auto-generated XE "auto-generated" code. (You will see user-customized tags again with pseudo tags in the next tutorial.)

If you have done any coding besides this tutorial, you have probably run into the error “You cannot mix parameter and non-parameter tags”.

If there were not a Rapid parameter tag XE "parameter tag" to XE "to" use here and you tried to use a regular Rapid tag, you would get an error. Try deleting the colon (:) from <body-label:> to confirm this.

User-customized tags. The tag name XE "name" is XE "is" dynamic depending on what field in the <field-list XE "field-list" > is being addressed. For example, to XE "to" change the label XE "label" of the country field, you would use the <country-label> tag.

Tag nesting. The feature that you see here is XE "is" the ability to XE "to" nest tags in order XE "order" to pass data. Here you are passing the content XE "content" of the tag to the label XE "label" variable of the <field-list XE "field-list" > tag.

Let’s go one step further and re-label the other two fields displayed on our page. You can just nest each <fieldname-label> tag after the other within <field-list XE "field-list" > and Hobo XE "Hobo" will pass the content XE "content" into the <field-list> tag.

You might be noticing that categories is XE "is" not a field at all; it is a collection XE "collection" . That is not a problem for Hobo XE "Hobo" . Hobo can address the label XE "label" using the <categories-label> just as if it was a field:

<show-page>

 <collection-heading:></collection-heading:>

<field-list XE "field-list" : fields = "body XE "body" , country, categories">

<body-label:>Recipe</body-label:>

<country-label:>Origin</country-label:>

<categories-label:>Flavors</categories-label:>

</field-list XE "field-list" >

<show-page>

Refresh your browser and try this out.

[image: image118.png]€ C:\utorials\four_tablelapp\views\recipes\show. dryml - e
Fie Edt View Text Navigation Bundes Help

project 8] [<] 3 shomarymi @ | Clrecoss.conroers>_ 3| (Y ndoxchym | Ulpagssyni 3| Olrecbord (>
& viewhits 2| Lejeshou-page>
2 categories 3l <field-list: fields = "body, country, categories”™
2 countries 1 <body-label:>Recipe</body-Llabel:
& Front s <country-label:>0rigin</country-label:>
(9] index.dryml B <categories-label:>Flavors</categories-label:>
© layouts 7l rielaiee
5 23 recpes 8 </shov-page>
index.dryml o

our, Tables, No Waiting - Mozilla Firefox
Ele Edt View Hstory Bookmarks Ioos Help

O - C % o (O o

Four Tables, No Waiting

Home || Recipes [| Categories [| Countries
| | |

3 ezas
cheddar cheese
butter

Origin American

Flavors hot, sour

4. Using the <view> tag to XE "to" display a record. There is XE "is" still another way to work with the fields of an individual record and its associated records using the <view> tag.

Let’s make a tag from the <show-page> tag within application.dryml XE "application.dryml" . Recall that you can use the merge attribute XE "attribute" within a template although you can’t use the <extend> tag in a template, only in application.dryml.

Let’s try out the following code in application.dryml XE "application.dryml" .

<def tag="show-page-new">

<show-page merge>

<content-body XE "content-body" :>

<h2>Title:</h2>

<view:title/>

<h2>Recipe:</h2>

<view:body XE "body" />

<h2>Categories:</h2>

<view:categories/>

<h2>Country:</h2>

<view:country/>

</content-body XE "content-body" :>

</show-page>

</def>

<show-page-new/>

In the above code, we are using the parameter tag XE "parameter tag" <content-body XE "content-body" :> defined from a parameterized <section> tag in the <show-page> tag:

<section param XE "param" ="content-body XE "content-body" ">

By placing new HTML XE "HTML" and Rapid library tags within the <content-body XE "content-body" :> tags, we are changing the default content XE "content" defined in the <show-page> tag to XE "to" the new content and preserving everything else in the <show-page> tag. We are not only preserving the content but also the formatting. Hobo XE "Hobo" has predefined CSS XE "CSS" formatting as you probably have gathered that correspond to the Rapid tags.

If, for example, we had used the replace attribute XE "attribute" in the <content-body XE "content-body" :> tag like this…

<content-body XE "content-body" : replace>

..we would have removed Hobo XE "Hobo" ’s built-in formatting.

Remove the last code in show.dryml XE "show.dryml" and put <show-page-new/> at the top.

Refresh your browser without using the replace attribute XE "attribute" and then try it with the attribute to XE "to" see confirm that the formatting will be removed.

[image: image119.png]Four Tables, No Waiting

Home || Recipes [| Categories [| Countries

Omelet

Title:

Omelet

Recipe:

3 ezas
cheddar cheese
butter

Categories:

hot, sour

Country:

American

Here is XE "is" what happens when you add the replace attribute XE "attribute" .

[image: image120.png]Four Tables, No Waiting

Home || Recipes || Categories || Countries

Omelet

Title:
omelet
Recipe:

3eggs
cheddar cheese
butter

Categories:

hot, sour

attribute"
Now take out the replace attribute before proceeding.

6.
Summary. You have now learned to XE "to" create a new template called show.dryml XE "show.dryml" in the views/recipes directory that is XE "is" used whenever there is an action XE "action" to display an individual recipe record. Before you created this file, Hobo XE "Hobo" was constructing the template on-the-fly from the auto-generated XE "auto-generated" <show-page> tag in pages.dryml XE "pages.dryml" .

Tutorial 15 – New and Edit Page XE "Edit Page" s with The Form Tag XE "Form Tag"

In this tutorial you will be introduced to XE "to" the <new-page> and <edit-page> auto-generated XE "auto-generated" tags. Both of these tags utilize the Rapid <form XE "form" > tag as their basic building block. You will learn how the <form> tag utilizes both the <field-list XE "field-list" > and <input> tags. You will also learn about the concept of a “polymorphic XE "polymorphic" ” tag which renders form components based on field type and model structure.

Tutorial Application: four_table

Topics

· The <new-page> and <edit-page> tags
· The <field-list XE "field-list" > tag
· The <input-tag>
Steps

1.
Getting introduced to XE "to" the <new-page> and <edit-page> tags. Go into pages.dryml XE "pages.dryml" and take a look at the code for both of these tags. Here is XE "is" the <new-page> definition.

<def tag="new-page" for="Recipe">

 <page merge title="New Recipe">

 <body XE "body" : class="new-page recipe" param XE "param" />

 <content XE "content" : param XE "param" >

 <section param XE "param" ="content-header XE "content-header" ">

 <h2 param XE "param" ="heading XE "heading" ">New Recipe</h2>

 </section>

 <section param XE "param" ="content-body XE "content-body" ">

 <form XE "form" param XE "param" >

 <submit XE "submit" : label XE "label" ="Create XE "Create" Recipe"/>

 </form XE "form" >

 </section>

 </content XE "content" :>

 </page>

</def>

And here is XE "is" the <edit-page> definition.

<def tag="edit-page" for="Recipe">

 <page merge title="Edit Recipe">

 <body XE "body" : class="edit-page recipe" param XE "param" />

 <content XE "content" :>

 <section param XE "param" ="content-header XE "content-header" ">

 <h2 param XE "param" ="heading XE "heading" ">Edit <type-name/></h2>

 <delete-button XE "delete-button" label XE "label" ="Remove This Recipe" param XE "param" />

 </section>

 <section param XE "param" ="content-body XE "content-body" ">

 <form XE "form" param XE "param" />

 </section>

 </content XE "content" :>

 </page>

</def>

The components that we are going to XE "to" focus on are shown in bold italics. Let’s also take a look at the <form XE "form" > tag that both of these tags call.

<def tag="form XE "form" " for="Recipe">

 <form XE "form" merge param XE "param" ="default">

 <error-messages XE "error-messages" param XE "param" />

 <field-list XE "field-list" fields="title, body XE "body" , categories, category_assignments, country" param XE "param" />

 <div param XE "param" ="actions XE "actions" ">

 <submit XE "submit" label XE "label" ="Save" param XE "param" /><or-cancel param="cancel"/>

 </div>

 </form XE "form" >

</def>

In a nutshell, you can see that each of these auto-generated XE "auto-generated" tags call the auto-generated <form XE "form" > tag which is XE "is" defined by merging the Rapid <form> tag in addition to XE "to" other tags. The specific fields that will be used in the form are declared within the fields attribute XE "attribute" of the <field-list XE "field-list" > tag that you learned about in Tutorial 14 on the <show-page> tag.

You no doubt are noticing that the <field-list XE "field-list" > tag is XE "is" doing something different here. Instead of displaying a two-column table consisting of field labels in the first column and field data in the second, it is putting the appropriate data entry control in the second column. The data entry control choice depends on the type of field that was defined in the model.

Hobo XE "Hobo" puts a one-line data entry box for the title field which is XE "is" a string field and a larger box for the body XE "body" field which is a text field. Notice that Hobo also creates drop-down XE "drop-down" combo controls XE "controls" for the country field and for the categories collection XE "collection" .

Hobo XE "Hobo" does this from inspecting table relationships. The recipe model is XE "is" related to XE "to" both the country model and the category model. This is a pretty powerful capability for just one tag, especially given that the Category model is related to the Recipe model through a many-to-many relationship through the CategoryAssignment model.

[image: image121.png]admint@harguin.com ¥ |

Four Tables, No Waiting

Home || Recipes [| Categories [| Countries

New Recipe

Titte

[
Body

Categories =
Add Category v
Country.

All of this capability results from Hobo XE "Hobo" ’s implementation of tag polymorphism XE "tag polymorphism" , an ability to XE "to" do what is XE "is" necessary from the context XE "context" of the code. Polymorphism means ‘many forms (not data entry form XE "form")’ or ‘many structures’. It is a hallmark feature of the Ruby language.

(There is XE "is" even more going on in the <field-list XE "field-list" > tag but we will wait to XE "to" discuss it until the next step.)

Before moving on, let’s take care of a detail by using your knowledge of parameter tag XE "parameter tag" s. You will note that the <new-page> tag calls the <submit XE "submit" :> parameter tag and that the <edit-page> tag does not. But there is XE "is" still a submit button on the edit page. The explanation can be found in the definition of the <form XE "form" > tag. There you will see that the <submit> tag is declared as a parameter tag as is the <or-cancel> tag.

The <new-page> tag calls the <submit XE "submit" :> parameter tag XE "parameter tag" and changes the label XE "label" from its default value of ‘Save’ to XE "to" a new value of ‘Create XE "Create" Recipe’. There is XE "is" no need to call the <or-cancel> tag with its parameterized name XE "name" , <cancel>, because it is not changed XE "changed" .

On the other hand, the <edit-page> tag just relies on the default for both of these tags so there are no calls to XE "to" them in the <edit-page> tag definition.

2.
Working with the <field-list XE "field-list" > tag. You have already done some work with this tag in the last tutorial. Experiment with removing a field by editing the tag’s fields attribute XE "attribute" . First copy the three tags above into application.dryml XE "application.dryml"
 (As we have mentioned, you probably want to XE "to" be careful about editing tags this way in a real application. But this is XE "is" the easiest way for us to acquaint you with how Hobo XE "Hobo" works.)

Let’s remove the categories drop-down XE "drop-down" box as an experiment. Working in application.dryml XE "application.dryml" , edit the <form XE "form" > definition code. Change

<field-list XE "field-list" fields="title, body XE "body" , categories, category_assignments, country" param XE "param" />

to XE "to" :

<field-list XE "field-list" fields="title, body XE "body" , category_assignments, country" param XE "param" />

[image: image122.png]New Recipe

Titte

Body

Country (No Country) ¥,

or Cancel

C:Mutorials\our_tablelapp\viewsMaglibs\application. drym. - e

Fle Edt Vew Text Nevigation Bundes Help

Project B« | () applcation.dryml 3 (4
0 viewhits a5]
= 5 views 35E|cdet tag="fora” for="Recipe">

) cotegories 66| <forn merge paran=default’>
) countres 37|| <ercor-nessages paren/>
= & front 35|| <tiela-list ficlds="ritle, body, category_assigmments, country” param/>
(9] index.cryml 39 <div param=actions™>
© layouts a0 <submit label="Save” param/><or-cancel param="cancel”/>

- recipes. - e

Now your categories drop-down XE "drop-down" box is XE "is" gone.

You may be wondering why we did not remove the category_assignments attribute XE "attribute" also or for that matter why it is XE "is" there at all. First, try removing category_assignments without removing categories. There is no effect. Try removing both. You get the same result as with removing categories alone. This is just how the <field-list XE "field-list" > tag works. On the other hand, the model structure that connects the Recipe model to XE "to" the Category model through the CategoryAssignments model must, of course, be there for the drop-down XE "drop-down" box to be there at all. Put back the categories drop-down box to end this step of the tutorial.

3. Working with the <field-list XE "field-list" > and <input> tags. In the same way that <field-list> calls the <view> tag when it is XE "is" showing a record’s data, <field-list> calls the <input> tag when it is creating an empty form XE "form" to XE "to" enter a record or populating a form for editing a record. This is an illustration of tag polymorphism XE "tag polymorphism" . That is, <field-list> does many different things depending on the context XE "context" of its use.

The overall syntax of the <input> tag is XE "is" the same as the <view> tag. When you wish to XE "to" create an input control on a form XE "form" , one at a time, you can invoke the control in the following way.

<input:title>

In the code above you are requesting that an input field be created for the title field of the Recipe model. Hobo XE "Hobo" knows to XE "to" use the Recipe model as long as you are in the context XE "context" of the Recipe model, which in this case is XE "is" set by working within the Recipe form XE "form" . Further, as you’ve seen before, Hobo knows just what kind of control you are likely to need.

Below we are going to XE "to" show you how to construct essentially the same form XE "form" out of <input> tags that you created with the <field-list XE "field-list" > tag in the previous step.

Let’s be a bit more rigorous now in constructing tags from tags. First remove the form XE "form" definition tag from application.dryml XE "application.dryml" . You will now use the <extend> tag to XE "to" redefine an auto-generated XE "auto-generated" <form> tag with the same name XE "name" .

First, let’s create the skeleton of an extend tag so we can watch what happens one step at a time. The following code placed in application.dryml XE "application.dryml" will cause no change because it substitutes this <form XE "form" > tag for the original <form> tag.

<extend tag="form XE "form" " for ="Recipe">

<old-form merge/>

</extend>

The following code, which might seem to XE "to" be identical, actually is XE "is" not.

<extend tag="form XE "form" " for ="Recipe">

<old-form merge>

</old-form>

</extend>

In the above case, Hobo XE "Hobo" replaced the default content XE "content" of the parameterized <form XE "form" > tag with blank content resulting in a blank form. Go to XE "to" the ‘Recipes’ tab and pick a recipe. Then click ‘New Recipe’ to see the blank form.

Now let’s get some content XE "content" into the parameter tag XE "parameter tag" . Copy the following code into application.dryml XE "application.dryml" :

<extend tag="form XE "form" " for ="Recipe">

<old-form merge>

<error-messages XE "error-messages" param XE "param" />

<p><input:title/><p/>

 <div param XE "param" ="actions XE "actions" ">

 <submit XE "submit" label XE "label" ="Save" param XE "param" /><or-cancel param="cancel"/>

 </div>

</old-form>

</extend>

Refresh your browser.

[image: image123.png]admin@barguin com ¥

Four Tables, No Waiting

Home || Recipes

|| Categories || Countries

New Recipe

@ C:\utorialsMour_tablelapp\views\taglibs\application. drym - e
Fie Edt View Text Navigation Bundes Hel

= 3 [4]) apphcationdeymi G|
&) viewhints ~| s
=0 views 35E]cextend tag="forn" for ="Recipe”>
) categories 360] <ola-forn merge>
© countries 3 <error-nessages paran/>
=0 front 38 <inputititle/>
(9] index.cryml 331 <div param="actions™>
Sous =T CSibat TebelorSave” paren/><or-cancel paraa="cansed >
5 23 recpes a </aivn
E index.dryml S|l coratoms
show.cryml 43 Ueexcens]
523 tagbs 2
SR as
5 Erapd 46CJcder tag="index-page” for="Recipe">
cardsdryml ¥|| @] <page nerge title="Recipes>
- B IR e s
43L] ntenti baraw:

— 1 Pr—y Jr—y m .

We’ve got an entry control but <input> has no built in labeling like <field-list XE "field-list" >. We need to XE "to" add it like we did with the <view> tag.

<extend tag="form XE "form" " for ="Recipe">

<old-form merge>

<error-messages XE "error-messages" param XE "param" />

<p>Title</p>

<p><input:title/><p/>

 <div param XE "param" ="actions XE "actions" ">

 <submit XE "submit" label XE "label" ="Save" param XE "param" /><or-cancel param="cancel"/>

 </div>

</old-form>

</extend>

Refresh your browser:

[image: image124.png]admin@barquin.com ¥

Four Tables, No Waiting

Home || Recipes || Categories || Countries

New Recipe

Titte

Create Recipe [IES0C]

@ . C:MutorialsVour_tablelappiviewsMaglibs\application. dryml -

Fle Edt Vew Text Nevigation Bundes Help

g 9]4])« cppicatondryml |
&) viewhints Yl
26 views SSlcexten tag-com” for ~Recipe">
3 categores 360 <old-forn nerge>
5 countes @ ¥error-nessases pazans>
=8 front s <TI0/
9] ndex.ciryml 39 <input:title/>

@ loouts Pt <atv paren-"actions™>
= redipes AJT <submit label="Save” param/><or-cancel param="cancel"/>
e e <ain
‘show.dryml a3l </old-form>
= tagibs. a4 < /exrena>
= aute 45
=Y 2
p—— v w
=& 48t vag-ringex-page” for-Recipe">
4951 _<pace merce ritle="Recives”

Line: 37 Column: 3 ' Plain Text ' Tah Size: 4 I UH-E ot

Do the same thing for the rest of the fields. (Some of Hobo XE "Hobo" ’s tags have differing built-in breaks, which is XE "is" why the number of breaks varies some below.)

<extend tag="form XE "form" " for ="Recipe">
 <old-form merge>
 <error-messages XE "error-messages" param XE "param" />
 <p>Title</p>
 <p><input:title/></p>

 <p>Recipe</p>
 <p><input:body XE "body" /></p>

 <p>Categories</p>
 <p><input:categories/></p>

 <p>Country</p>
 <p><input:country/></p>

 <div param="actions XE "actions" ">
 <submit XE "submit" label XE "label" ="Save" param/><or-cancel param="cancel"/>
 </div>
 </old-form>
</extend>

[image: image125.png]Four Tables, No Waiting

Home || Recipes || Categories || Countries

@ C:\utorialsMour_tablelapp\views\taglibs\application. drym - e

New Recipe Fie Edt Vew Text Navigation fundes Hep

[epplctiondryml & |

33 U</extena>
:
as L </old-form>
50 L</extena>
.
5
.

(No Country) v

Plan Text Tab Size: 4

Create Recipe [ES0CE]

Now you have succeeded in reconstructing a form XE "form" with the <input> tag and a little bit of additional HTML XE "HTML" formatting.

Summary. Hobo XE "Hobo" provides some great functionality for fine-tuning your application when the default rendering is XE "is" not quite what you would like. You can experiment with them by going through the documentation on the Hobo web site or learn more about them in later chapters of this book.

Tutorial 16 – The <a> Hyperlink Tag

In this tutorial you will learn to XE "to" develop sophisticated data-driven hyperlinks in you Hobo XE "Hobo" pages.

Tutorial Application: four_table

Topics

· The <a> “hyperlink” tag for calling data-driven pages
Steps

1. Review the <a> tag usage within Hobo XE "Hobo" ’s auto-generated XE "auto-generated" tags. Let’s take a look at the <a> tag usage in the auto-generated tags for the Recipe model.

<!--New Page Link from the Index Page Tag-->

<a action XE "action" ="new" to XE "to" ="&model" param XE "param" ="new-link"/>

This tag results in the ‘New Recipe’ hyperlink with the route ‘http://localhost:3000/recipes/new’.

<!--Edit Page Link from the Show Page XE "Show Page" Tag XE "Show Page Tag" -->

<a action XE "action" ="edit" if="&can_edit? XE "can_edit?" " param XE "param" ="edit-link XE "edit-link" ">Edit Recipe

This tag results in the ‘Edit Recipe’ hyperlink with a route like http://localhost:3000/recipes/2-omelette/edit.

2. Construct a link to XE "to" an index (record listing) page. Let’s work in the home page in the file views/front/index.html. We will place our test code after the “Congratulations . . . “ message.

<h4>

<a to XE "to" ="&Country" action XE "action" ="index" >List My Countries

</h4>

This code will generate a link to XE "to" a listing of countries in your database.

[image: image126.png]admin@barguin com ¥

Four Tables, No Waiting

Recipes || Categories || Countries

Welcome to Four Tables, No Waiting

Congratulations! Your Hobo Rails App is up and running

List My Countries @ C:MutorialsVour_tablelappviews\rontlindex. dryml - e
Fle Edt Vew Text Navigation Bundes Help

Bt B« | () applcation.drymi
& () viewhits a =] et paan = =
& 5 views 15 fe/aees |
5 categories 1a
S countries 15?<paqe title="Hone">
& Front 16| <posy: class"eront-pages>
[9) indes.cryml 176 <content:>

) levouts 15? <header class="content-header”>
= 3 recpes 19 <h1>Uelcone to <app-name/></hl>
9] index.dryml)zl <section class="velcone-nessage">
5 £ taglbs 22 | <or/s<ne
S 23 list Ny Countries

£ 6 repid 24 </t L
cords.drym 25
forme et 26 </section>

Settings 2 ‘L </header>

P Toxt Tiab seeit L

Programming note. The to XE "to" attribute XE "attribute" defines the model to be used in the listing. It is XE "is" always prefixed by the & character. The action XE "action" attribute defines the controller action which in the above case uses Hobo XE "Hobo" ’s built-in index action. As you get more sophisticated, you will learn to define your own controller actions XE "actions" . These can be referred to by the action attribute too.

Of course, if you click on the ‘List My Countries’ link, you will now see a listing of countries.

[image: image127.png]EELICTTE I N==[8 Logsedin as Admin Account Log out

Four Tables, No Waiting

Recipes [} Categories [MEITIGS

Countries

There are 3 Countries

New Country

American

French

Chinese

3.
Construct a link to XE "to" a new record page. We can construct a link to create new countries in much the same way.

<a to XE "to" ="&Country" action XE "action" ="new" >New Country

[image: image128.png]Four Tables, No Waiting

Recipes || Categories || Countries

Welcome to Four Tables, No Waiting

.

Congratulations! Your Hobo Rails A and running

List My Countries
New Country

@ C:\utorialsMour_tablelapplviews\rontiindex. dryml - e
File Edt View Text Navigation Bundes Help

Project B« epplcationdyml (| [)index.dryml 3 »
() viewhints. ~ L b 0
=) views S 13 Hesaers]
1) categories. 14
1) countries 15?<paqe title="Home">
=0 front 16 <body: class="front-page”/>
[9) indesdiym 175 <contents>
&) lavouts i Js? <header class="content-header">
=5 recipes S| e <hl>Welcome to <app-name/></hl>
) iy Hlfz <szction class"welcone-nessage™>
=) taglbs 22
<hd>
T o 2 <a to-"cCountry” action-"index” >List Hy Countrizs</

= rapid 24 </hd>
cards.cryml 2 Hew Country</a

foume s 26 </sections
27 :~ </header>

P Toxt Tiab seeit L

Now you’ve got another link to XE "to" try out.

4.
Construct a link to XE "to" an edit record page. If you want to create a custom link to an edit page, you have to be sure you are in the right context XE "context" . Hobo XE "Hobo" can implicitly figure out which record you wish to edit, but only if you are displaying a particular record.

 In the example from Step 1 above, the ‘edit page’ link occurs in a <show-page> tag definition so Hobo XE "Hobo" knows what record you want to XE "to" edit.

Let’s create our own link on the Country <show-page> tag by using the <content-body XE "content-body" :> parameter tag XE "parameter tag" that is XE "is" defined in the auto-generated XE "auto-generated" <show-page> tag for the Country model. Create XE "Create" a new file called show.dryml XE "show.dryml" in your views/countries directory.

You need to XE "to" use the parameter tag XE "parameter tag" or Hobo XE "Hobo" will ignore your code. This is XE "is" just how the <show-page> tag was defined.

<show-page>

<content-body XE "content-body" :>

<a action XE "action" ="edit" >Edit My Country

</content-body XE "content-body" :>

</show-page>
Go ahead and refresh your browser, click on the ‘Country’ tab and click on a country and you will see your new link to XE "to" edit it on the bottom left.

[image: image129.png]admin@barguin com ¥

Four Tables, No Waiting

Home || Recipes [| Categories [| Countries

@ C:\utorialsMour_tablelapp\views\countries\show. drym! - e
Fie Edt

American

View Text Navigation Bundes

Help

project |) shomarym 3

R g e A igfonov-page>
vons <oontent-bo:
& cotegores <a sotio

=0 E]unmes
] show.dryml U¢/show-page
IPSCL 5 Lic/snou-page>
[8) inder.cryml
& layouss
&) respes L
] inderc cryml
& £ tagibs
EI=YTy
£ 6 repid

181 care ruml

E&)

Figure 136: Page view of custom <show-page> tag

5. Construct a link to XE "to" specific record. In general, Hobo XE "Hobo" takes care of linking to specific records for you by setting up the links implicitly in the <index-page>. If you need to link to a specific record, that will require a little Ruby to address a specific record in the database.

CHAPTER 5 – ADVANCED TUTORIALS

Tutorial 17 – The Agile Project Manager
User Comments" Tutorial 18 – Adding User Comments to XE "to" Models

CKEditor" Tutorial 19 – Using the CKEditor Rich Text XE "Rich Text" Editor with Hobo
 XE "Hobo"
Tutorial 20 – Replicating the Look and Feel of an Existing Site
Tutorial 21 – Rapid Deployment with Heroku XE "Heroku" .com XE "Heroku.com"

Tutorial 17 – The Agile Project Manager

This tutorial is XE "is" adapted from the classic “Agility” tutorial created by Tom Locke. It retains much of Tom’s text and style. We have also highlighted quotes from Tom at critical points in the tutorial.

We outlined these goals earlier in Chapter 1:

1. The application “Projects” maintains a set of projects, requirements, and related tasks for a team of people.

2. Users access the application with a browser. The browser provides the capability to XE "to" create, edit, delete and list projects, tasks, and task assignments.

3. All data entry fields have rollover hints to XE "to" aid user data entry. Validation rules attached to the fields to prevent invalid entries.

4. Each project can have any number of associated tasks, and each task can have one or more team members assigned to XE "to" it.

5. Each task has one status at any given time. A drop-down XE "drop-down" list of status codes will be displayed on a task creation page. Only one of these status codes can be selected and saved for this task.

6. There is XE "is" a signup and login capability permitting each team member to XE "to" create his/her own login name XE "name" and password. The system administrator is determined by a simple rule--the first to log in to the application becomes the system administrator.

7. There will be a simple role facility that will allow an Administrator to XE "to" assign roles to users. Both the Administrator and Coordinator roles can create and update XE "update" projects, requirements, and tasks and assign team members to a task. Analysts, Developers, and Testers can change the status of a Requirement.

8. The task assignment page will have a drop-down XE "drop-down" list of all existing team members. Only members of this list can have tasks assigned to XE "to" them.

9. A project page will display a list of all tasks assigned to XE "to" the project.

10. A task page will display a list of team members assigned to XE "to" the task.

Introduction

In this tutorial we’ll be creating a simple “Agile Development” application – Projects. The application tracks projects. Projects consist of a number of requirements described from the user’s point of view. Each requirement has a status (e.g., requested, accepted, under development…) as well as a number of associated tasks. Tasks are assigned to XE "to" one or more users, and each user can see a queue of all the tasks they’ve been assigned to on their home page.

Note that many agile XE "agile" development texts refer to XE "to" requirements as “stories”. For purposes of this tutorial we have opted to use the more traditional term “requirements”

Part 1 – Getting Started

Create XE "Create" the application like you have for the other tutorials:

> hobo projects

Now look again about what we want this app to XE "to" do:

· Track multiple projects
· Each project has a collection XE "collection" of requirements (“requirements”) which are described at a high-level requirements using the language of the user
· Each requirement is XE "is" just a brief chunk of text
· A requirement can be assigned a current status and a set of outstanding tasks
· Tasks can be assigned to XE "to" users
· Each user will have a simple view of the tasks they are assigned to XE "to"
So:

· Project (with a name XE "name") has many requirements
· Requirement (with a title, description and status) belongs to XE "to" a project AND has many tasks
· Task (with a description) belongs to XE "to" a requirement AND has many users (through task-assignments)
· User has many tasks (through task-assignments)
 Now we need to XE "to" create the models outlined above using the Hobo XE "Hobo" generator:

> ruby script/generate XE "ruby script/generate" hobo_model XE "hobo_model" _resource XE "hobo_model_resource" project name XE "name" : XE "name:" string

> ruby script/generate XE "ruby script/generate" hobo_model XE "hobo_model" _resource XE "hobo_model_resource" requirement title:string body XE "body" :text status:string

> ruby script/generate XE "ruby script/generate" hobo_model XE "hobo_model" _resource XE "hobo_model_resource" task name XE "name" : XE "name:" string

Remember that the “hobo_model XE "hobo_model" _resource XE "hobo_model_resource" ” generator builds the entire MVC XE "MVC" (Model/Controller/View) infrastructure needed for any model requiring a web-font end. The “task assignments” model is XE "is" simply the table required to XE "to" support many-to-many relationships behind the scenes. So a view or controller is not needed, so we only need the hobo model generator:

> ruby script/generate XE "ruby script/generate" hobo_model XE "hobo_model" task_assignment

Note that we are using the convention of naming an association table with the combination of model names separated by an underscore:

task + assignment becomes: task_assignment

The field declarations have been created by the generators in each model file, but not the associations XE "associations" .

To create the associations XE "associations" , edit each model file as outlined below and declare the association just below the “fields do ... end” declaration in each model, as follows:

[image: image130.png]hobo_nodel # Don't put anything above this
fields do
nene :string
tinestaups
end
has_nany :requirements, :dependent=> :destroy

Pernissions -

¥

def create_permitted?
acting_user. aduinistrator?

s WP

P

[image: image131.png][requirement.b &

15class Requirement < ActiveRecor
2

Base

3|| nobo_model # Don't put anything above this
a

5G] rields o

6 title :string

7 body text

s status :string

s tinestanps

10l ena

1

12| bvelongs_to :project, :index => 'requirement project_index'
13| nas_many :tasks, :dependent => :destroy

il s P NS SOV

Figure 138: Adding "belongs_to XE "belongs_to" :project" and "has_many XE "has_many" :tasks" to XE "to" the Requirement model

Note that we have chosen to XE "to" specify the index name XE "name" associated with the belongs_to XE "belongs_to" declaration in the Requirement model. We did this in case we might want to port this app to Oracle XE "Oracle" at some point, and Oracle has this irritating limitation of 30 characters for table, column, and index names. If we had not specified the index name, Rails would chose a default name, which is XE "is" often longer than 30 characters.

[image: image132.png]| taskrb (3

10JF1ass Task < ActiveRecora

hobo_nodel # Don't put anything above this

fields do
nene :string
tinestaups
end

belongs_to :requirement, :index => 'requirement_task_index'
has_nany :task_assigmments, :dependent => :destroy
has_nany :users, :through => :task_assignments

--- Pernissions

e P AP

¥
T e Y e W L S

Figure 139: Adding the “belongs_to XE "belongs_to" ” and “has_many XE "has_many" ” declarations to XE "to" the Task model
[image: image133.png][task_assignmentrb &3

15J-ass Taskhssigmment < ActaveRecord

2
3

hobo_nodel # Don't put anything above this

fields do
tinestaups

end

belongs_to tuser, iindex => 'assigmment user_join index'

belongs_to stask , ‘assiguuent_task_join_index'

--- Pernissions

NP SIS

Figure 140: Adding the two "belongs_to XE "belongs_to" " definitions to XE "to" the TaskAssignment model

[image: image134.png]Dusersd &

15E1ass Uaer < ActiveRecora

hobo_user_nodel # Don't put anything above this

fields do
name :string,
enail sddress
aduinistrator
tinestaups
end

unique
email address,
oolean, :default

ogin > true
false

has_nany :task_assigmments, :dependent => :destroy
has_nany :tasks, :through => :task_assignments

A G A AR s g s . 4B,

Figure 141: Adding the "has_many XE "has_many" " declarations to XE "to" the USer model

Now Hobo XE "Hobo" will create a single migration XE "migration" for all of these changes:

ruby script/generate XE "ruby script/generate" hobo_migration XE "hobo_migration"

 XE "migration"
Load the migration XE "migration" file in your text editor to XE "to" see what was generated:

[image: image135.png]File Edt View Text Navigation Bundles Help

profect || [)20091125123344_hobo_migration_tb G
= questab 8| IGftass Hobotigrationt < AcciveRecora: sMigration
72 project.rb 26 def self.wp
= requrement.b 5] create vable stask assigments do 1ci
2 taskib 2 ©.datecine screated at
= tas_sssgment. b s ©.datecine rpdated at
2 userth c Cinteger ruserid
2 usermlerb 7 Clinteger stask id
£ viwhnts ol ena
S vows 9| sdoinder :task assigments, [ruser_ia), cname -> 'assignment_user_join_index'
= £ config 10 add_index :task assignments, [itask id], imame => 'assignuent_task_join_index'
= 3 environments 1
2 development b 120 creare_table projects do 1|
= productontb 1 t.atiing tname
2 et 11 ©.datecine screated at
£ intializers 15 t.datetine :updated at
4 backace_stencerssb 6 ena
% hoboub 17
% iflectons.tb 150 create_table stasks do 1|
% mime,types.d 1s toatring tname
% new rais_cefauks.b 2 ©.datetiue screated at
% sasson soresb 2 ©ldaterine wdated at
€2 luses 2 Clinteger :reguirement id
¥= boot.rb 23 end
[5) database.ymi 2a]| eds_tnaex stasks, [:requirement 141, sname -> 'requirenent_cask_index’
% envronment.rb 2
2 routestb 260 create_sabie users do Icl
[8) _satabase.yml 21 C.string scrmted passwrd, :limit
@ 28 t.string :salt, :limit => 40
= 3 migrate 29 t.string :remember_token
2 2001125123344 hobo_miraton_Lth % ©.datetiue sremember token expires at
& shenarb a tistring tname
D a2 Cistring semail address
QW 3 Clboolean administrator, idefault <> false
=] ! ©.datecine screated at
© publec 3s ©.daretine tupdated at
St 3 Cistring state, default - “active’
Stest a7 tldatetine tkey tinestamp
Dtmp 38 end
S vendor S|l 8| sausnex susers, Cistate]
3 rolere v =
== 41E] create_table :requirements do It
B toscring ititle

Figure 142: First Hobo migration XE "migration" for Projects

[image: image136.png]ORACLE' Database Express Edition

User: TWO_TABLE_DEVELOPMENT

Home > Object Browser

Indexes] SYS_C004009
e >

Object Details Statistics SOL

ASSIGNMENT_TASK_JON_INDEX. T [[

ASSIGNMENT_UISER_JON_INDEX

NDEX_UISERS_ON_STATE Index lame Svs_condns
REGUIREMENT_PROJECT_INDEX. M NORMAL
REQUIREMENT_TASK_INDEX Nableowner

TIO_TABLE_DEVELOPMENT

SvS_coviony
g TASK ASSGMMENTS
Svs_cmantt n B
Svs_owans
B Uniquencss UNGLE
Svs_owan7 Compression _ DISABLED
UNGLE_SCHEVA_MGRATIONS PrefixLongth -
4 Tablespace llame USERS
status vaLp
LastAnayzed -

Index Columns.

COLUMN_UAME _COLUMI_EXPRESSION _COLUMN_POSITION
D - 1

Figure 143: View of indexes created by the migration XE "migration"
In the figure above you can see the indexes that were created in an Oracle XE "Oracle" environment. Notice that in addition to XE "to" our custom indexes, all of the tables have a unique identifier column called “ID” that is XE "is" also indexed. All of these indexes start with the “SYS_” prefix.

After you run the migration XE "migration" fire up the app:

> ruby script/server XE "ruby script/server"
Here is XE "is" what you app should look like now:

[image: image137.png]Login Signup.

Projects

Projects | Requirements

Welcome to Projects

Congratulations! Your Hobo Rails App is up and running
o T customise this page: adit appviews front/index.dryml

There are no user accounts - please provide the details of the site administrator

HName

Email Address

Password

Password Confirmation

Figure 144: The default Home page for the Projects application

Make sure you create a first user, which will by default have administrator rights. Then remember to XE "to" stay in as an administrator (e.g., the user who signed up first), and spend a few minutes populating the app with projects, requirements and tasks.

Now enter a few projects like this:

[image: image138.png][LECI T EIN=e .| LoggedinasOwen Account Logout

(IS Requirements

Projects
There are 4 Projects
New Project

REEIS Development
0 Requirements

REEIS Operations and Maintenance
0 Requirements

Plan of Work Operations
0 Requirements

NIFA Portal Development
0 Requirements

Figure 145: The Projects index page

Enter a couple of requirements for one of your projects:

[image: image139.png]CEEUCEEENTINEENN Logged in as Owen — Account Log out

Projects

Home [Projects [Requirements

New Requirement

Titte Newnightly project ETL for projects

Body Svitch to using Talend from PL/SQL
Status

Project REEIS Development [

[image: image140.png]odall@barquincom v/ 0

Projects

Home [Projects [EERTTRRNS

Requirements
There are 2 Requirements
New Requirement

New nightly project ETL for projects
0 Tasks

Add Institution filter to the data marts
0Tasks

Figure 147: Index view for Requirements

And enter some tasks for one of the requirements:

[image: image141.png]odall@barguin.com ¥

Projects

tome || Projects | Requirements [Tasks

New Task
Name. Document all source tables|
Requirement New nightly project ETL for projects v

Figure 148: New Task page

[image: image142.png]odall@barquin.com WL LR

Projects

Home [Projects [Requirements

Tasks
There are 4 Tasks

New Task

Document target tables
0 Task dssignments

Document all source tables
0 Tsk Assignments

Develop and document data selection criteria
0 Task dssignments

Develop and document data selection criteria
0 Task dssignments

Figure 149: Index view for Tasks
The Application Summary Page

A handy new feature starting with Hobo 0.9.0 is XE "is" the Application Summary page. If you are an administrator you can access this page by entering the following URL in your browser:

http://localhost:3000/front/summary
This summary provides you quick access to XE "to" information on:

· Application Name

· Application Location

· Rails Version/Location

· Change Control (e.g., Git XE "Git")

· Gems

· Plugins XE "Plugins"
· Environments

· Models/Tables

· Model Associations

The following are screen shots of the Projects application so far. Notice that the development environment we have been using is XE "is" Oracle XE "Oracle" .

Note: The Application Summary is XE "is" refreshed each time a hobo_migration XE "hobo_migration"

 XE "migration" is executed.

[image: image143.png]odall@barguin com Loggedinas Owen Account Logout

Projects

Home M Projects

Application Summary

Application Name _ Projects
splcation Locstion Ci/tutoriss/projects
Rails Version '2 3.2
Rois Location gem

[Mode

development

Change Control

[Methad other]

Gerns

hobo =0 090 installed rails »=2.2.2 mistav-will paginate »=2.2.1 hobosupport =0.2.0 hobofields =0.9.0
rails =222 232 installed

mistav-wil_paginate >=2.2.1 2311 installed

50 090 installed

hobosupport
robofetss 50 050 installed rails 222 hobosupport -05.0
Plugins

hobo c:/ruby ib/ruby/gems/1.8/zems/hobo-0.2.0 other

Environments

development oracle JE

production oracle projects_production

est oracle projects_test

Guest

Project projects
Requirement .rEﬂuvremen(S
| Task tasks

TaskAssvgnment.task,assvgnments

User users

Userihailer

Figure 150: Part 1 of the Hobo Application Summary XE "Hobo Application Summary" Page

[image: image144.png]TPréject”

name string

created_at datetime

updated_at datetime

requirements has_many Requirement]

Requirement

it string
body toxt
status string

created_at datetime

updated_at datetime

project belongs_to Project

Jtasks has_many

Task
name string

created_at datetime

updated_at datetime

requirement belongs_to Requirement

[task_sssiznments has_many Taskssignment

users has_many sthrough User

TaskAssignment

created_at datetine

updated,at'datetvme

belongs_to User
belongs_to Task

crypted_password string

salt string

remember_taken string

remember_token_expires_at datetime|

name string
email_address Vstrmg
administrator .hmﬂean
created_at datetime
updated_at .datetvme
[state. Vstrmg

datetime

key_timestamp

tasks has_many sthrough Task

[task_assignments has_many Taskssignment

Figure 151: Part 2 of the Hobo Application Summary XE "Hobo Application Summary" Page

Removing actions XE "Removing actions"

 XE "actions"
By default Hobo XE "Hobo" has given us a full set of restful actions XE "actions" for every single model/controller pair. But many of these page flows (“routes”) are not optimal for our application.

For example, why would we want an index page listing every task in the database? We only really want to XE "to" see tasks listed against related requirements and users. We need to disable the routes we don’t want.

There’s an interesting change of approach here that often crops up with Hobo XE "Hobo" development. Normally you’d expect to XE "to" have to build everything yourself. With Hobo, you often are given everything you want and more besides. Your job is XE "is" to take away the parts that you don’t want

Here’s how we would remove, for example, the index action XE "action" from TasksController.

In app/controllers/tasks_controller.rb, change

auto_actions XE "auto_actions"

 XE "actions" :all

To

auto_actions XE "auto_actions"

 XE "actions" :all, :except => :index

Next, refresh the browser and you’ll notice that “Tasks” has been removed from the main nav-bar.

[image: image145.png]odall@barguin.com ¥

Projects || Requirements

Welcome to Projects

Congratulations! Your Hobo Rails App is up and running
o T customise this page: adit appviews front/index.dryml

RN SN T e Ao v SV SRt e

Figure 152: Effect of removing the "index" action XE "action" from the Tasks controller
Note: Hobo XE "Hobo" ’s page generators adapt to XE "to" changes in the actions XE "actions" that you make available.

Here’s another similar trick. Browse to XE "to" one of your projects that do not have related requirements. You’ll see the page text says “No requirements to display”:

[image: image146.png]odall@barguin.com v

Projects

tome || Projects | Requirements

REEIS Operations and Maintenance Edit Project

Requirements

No requirements to display

R N T

Figure 153: View of "No Requirements to display" message

There is XE "is" a “Edit Project” link, but no obvious way to XE "to" add a requirement related to this project. XE "Hobo" Hobo has support for this--but we need to switch it on.

Add the following declaration to XE "to" the requirements controller:

auto_actions XE "auto_actions"

 XE "actions" _for :project, [:new, :create]

[image: image147.png]odall@barguin.com ¥

Projects

tome || Projects | Requirements

REEIS Operations and Maintenance Edit Project

Requirements

No requirements to display
New Requirement ‘ﬁ

Figure 154: The "New Requirement" link now appears

Hobo XE "Hobo" ’s page generators will respond to XE "to" the existence of these routes and add a “New Requirement” link to the project page, and an appropriate “New Requirement” page:

[image: image148.png][T EC 0 LoggedinasOwen Account Logout

Projects

Home [Projects [Requirements

New Requirement
For: REEIS Operations and Maintenance

Titte

Body

Status

Figure 155: View of the "New Requirement" page

Create XE "Create" a requirement and you’ll see the requirement has the same issue with an associated task – there is XE "is" no obvious way to XE "to" create one. Again, we can add the auto_actions XE "auto_actions"

 XE "actions" _for declaration to the tasks controller, but this time we’ll only ask for a create action XE "action" , and not a new action:

auto_actions XE "auto_actions"

 XE "actions" _for :requirement, :create

Hobo XE "Hobo" ’s page generator can support the lack of a ‘New Task’ page – it gives you an in-line form XE "form" on the requirement page!

[image: image149.png]Projects

Home [Projects [Requirements

« REEIS Operations and Maintenance
Edit Requirement

Yearly load of State Plan data

The Plans of Work will be locked down by March 1. Load these as soon as possible after this date.

Status Requested

Tasks

No tasks to display.

Add a Task

HName

Figure 156: View of the in-line "Add a Task" form

Now we can continue to XE "to" configure the available actions XE "actions" for all of the controllers. So far we’ve seen the “black-list” style where you list what you don’t want:

auto_actions XE "auto_actions"

 XE "actions" :all, :except => :index

There’s also “white-list” style where you list what you do want, e.g.:

auto_actions XE "auto_actions"

 XE "actions" :index, :show

There’s also a handy shortcut to XE "to" get just the read-only routes (i.e., the ones that don’t modify the database):

auto_actions XE "auto_actions"

 XE "actions" :read_only

The opposite is XE "is" handy for things that are manipulated by AJAX, but never viewed directly:

auto_actions XE "auto_actions"

 XE "actions" :write_only # short for -- :create, :update XE "update" , :destroy

Now edit each of the controllers as listed below:

class ProjectsController < ApplicationController

 hobo_model XE "hobo_model" _controller XE "hobo_model_controller"
 auto_actions XE "auto_actions"

 XE "actions" :all

end

class TasksController < ApplicationController

 hobo_model XE "hobo_model" _controller XE "hobo_model_controller"
 auto_actions XE "auto_actions"

 XE "actions" :write_only,:edit

 # Add the following to XE "to" put an in-place editor within the Requirement page

 auto_actions XE "auto_actions"

 XE "actions" _for :requirement, :create

end

class RequirementsController < ApplicationController

 hobo_model XE "hobo_model" _controller XE "hobo_model_controller"
 # add this to XE "to" remove the Requirement tab from the main navigation bar

 auto_actions XE "auto_actions"

 XE "actions" :all, :except=> :index

 # add this line to XE "to" get a New Requirement link for the Project page

 auto_actions XE "auto_actions"

 XE "actions" _for :project, [:new, :create]

end
Notice the Task listing within a Requirement, and the “Add a Task” in-page editor:

[image: image150.png]odall@barguin.com

Projects

Home M Projects

« REEIS Development

Edit Requirement

New nightly ETL for grant awards

switch to using Talend from PL/SQL
Status

Tasks

Document target tables Edit
0 Task Assignments

Document all source tables Edit
0 Task Assignments

Develop and document data selection criteria Edit
0 Task dssignments

Develop and document data selection criteria Edit
0 Task dssignments

Add a Task

Name i

Figure 157: Requirement page after modifying controller definitions

Permissions XE "Permissions"
So far we’ve done two major things with our app:

· Created models and specified associations XE "associations"
· Modified controllers to XE "to" specify which actions XE "actions" are available
There’s one more thing we typically do when creating a new Hobo XE "Hobo" app, before we even touch the view layer. We modify permissions in the model layer.

Adding Roles XE "Roles"
Let’s do a simple addition to XE "to" the User model. Here we have taken the simple route, and created a new field called “role” along with the list of acceptable values using the Ruby enum_string XE "enum_string" method XE "method" :

 [image: image151.png][Jusersb &

1Glclass User < ActiveRecord::Base

hobo_user_nodel # Don't put anything above this

name :string, ‘unique
add the following to the default User fields:
role emm_string(:Coordinator, :Analyst, :Developer, :Tester]

3
a
5G] rields do
6
7
s

s enail_address :email address, :login => true
10 adninistrator ‘hoolean, :default => false
1 tinestanps

PR o e eso s A s B DA ettt

Figure 158: Defining available roles using “enum_string XE "enum_string" ”

Run a hobo_migration XE "hobo_migration"

 XE "migration" to XE "to" add this field to the database.

Modify the create permission to XE "to" allow an Administrator to create a new user:

[image: image152.png]def create_permitted?
acting_user. sauinistrator, M

end

def update_permitted?
acting user. aduinistrator? |1
(acting_user — self 4 only_chengeds(:email address, :crypted password,
urrent_password, :password, :password_confirmation)}
Note: crypted password has attr_protected so although it is permitted to change, it camnot be
directly from a forn submission.
end

def destroy permitted?
acting_user. aduinistrator?
end

def view permitted? (field)
true
end

lend

changed

Figure 159: Modifying the "create_permitted" method XE "method" to XE "to" the User model

Modify your Users Controller XE "Users Controller" as follows:

[image: image153.png][Jusers_controller.b 3

class DsersController < ApplicationController

hobo_user_contraller

auto_actions :all, :except => [:index, inew, :create]

1
2

3

a

5|| auto_sctions :a1il
6

7

s

5 Lena

0

1

Figure 160: Users Controller XE "Users Controller" with "auto_actions XE "auto_actions"

 XE "actions" :all:

Run the server again and then refresh your browser:
[image: image154.png]odall@barguin.com v

Projects

Home || Projects

Users
There i 1 User
New User

Owen
0 Tosk Assignments

Figure 161: The Users tab is XE "is" now active

Now we can edit a user and add a role:

[image: image155.png]Projects

tome | Projects | Users

Edit S

HName
Role
Email Address

Administrator

odalli@barguin.com ¥

Owen

Analyst v

odall@barquin com

Figure 162: The Edit User page with the new Role field

I have selected the “Analyst” option. So I have

1. A Hobo XE "Hobo" system permission as an Administrator

2. An Application role as Analyst.

Now let’s see how to XE "to" use this information.

Customize the Permissions XE "Permissions" by Role

Here is XE "is" what we would like to XE "to" implement:

· Only an administrator can delete projects, requirements, or tasks

· Only an administrator or coordinator can create and edit projects, requirements, tasks or task assignments

Change your permissions in project.rb as follows:

[image: image156.png][projectsb &

1Gclass Project < ActiveRecord::Base

2
3 || nobo_madel # Don't put anything anove this

a

sl tielas a0

5] nae :string

£ | —

ol ena

s

10|| has_nany requirenents, :dependent-> sdestroy

n

12| ¥ - Permissions - ¢

1

140) det create permitted?

15]| 4 Hake sure the user is 1) Signed up nd a Coordinator or 2) is an Aduinscrator
16|| (acting user.simed upe G acting user. role—"Coordinator’) || acting user.aduinistrator?
170 ena

1)

150 det wpdate permitted?

20]| ¥ make sure the user 15 1) Signed wp and a Coordinator or 2) is an Adwinstrator
21|| (acting user.simed upe G acting user. role—"Coordinator’] || acting_user.aduinististor?
22l| ena

2|

240) det destroy permittear

as]| tase ———————

26| ena

21

260) det view permittedr (ield)

2| true

aoll ena

2

52 lena

Notice that to XE "to" create a project, the active user must be an administrator OR:

· The user must be signed up (not a guest)

· The signed up user must have the role “Coordinator”

Also notice that we have entered “false” in the destroy_permitted? XE "destroy_permitted?" Definition. In this case, no user can erase a project. Deleting projects would have to XE "to" be done behind the scenes in the database, or the permissions changed XE "changed" to clean up unwanted projects.

Now enter the same permissions for requirements, tasks, and task assignments.

Here is XE "is" the code for project.rb listed in the figure above:

class Project < ActiveRecord::Base

 hobo_model XE "hobo_model" # Don't put anything above this

 fields do

 name XE "name" :string

 timestamps XE "timestamps"
 end

 has_many XE "has_many" :requirements, :dependent=> :destroy

 # --- Permissions XE "Permissions" --- #

 def create_permitted? XE "create_permitted?"

Make sure the user is XE "is" 1) Signed up and a Coordinator or 2) is an Adminstrator

 (acting_user XE "acting_user" .signed_up? XE "acting_user.signed_up?" && acting_user.role=="Coordinator") || acting_user.administrator?

 end

 def update XE "update" _permitted? XE "update_permitted?"
 # Make sure the user is XE "is" 1) Signed up and a Coordinator or 2) is an Adminstrator

 (acting_user XE "acting_user" .signed_up? XE "acting_user.signed_up?" && acting_user.role=="Coordinator") || acting_user.administrator?

 end

 def destroy_permitted? XE "destroy_permitted?"
 false

 end

 def view_permitted? XE "view_permitted?" (field)

 true

 end

end

Permissions XE "Permissions" for data integrity XE "Permissions for data integrity"
The permissions system is XE "is" not just for providing operations to XE "to" some users but not to others. It is also used to prevent operations that don’t make sense for anyone.

For example, notice default UI XE "UI" allows requirements to XE "to" be moved from one project to another. This may or may not be a sensible operation for anyone to be doing.

So, if you want to XE "to" stop this from happening, change the “update XE "update" _permitted? XE "update_permitted?" ” method XE "method" in requirement.rb:

 [image: image157.png]] requirement.rb

15

lclass Requirenent < ActiveRecord::Base
hobo_nodel # Don't put anything above this

fields dol
title istring
body text
status :string
tinestaups
end

belongs_to :project, iindex => 'reguirement project_index’
has_nany :tasks, :dependent => :destroy

- Permissions
def create_permitted?

{acting user.signed up? & acting_nser.role — "Coordinator”} or acting_mser.adninistrator?
end

def wpdate_permitted?

({acting user. signed up? & acting user.role — "Coordinator”) or acting user.administrator?) and !Project.changed?
end

def destroy permitted?
acting_user. aduinistrator?

end

def view permitted? (field)
true

end

lend

Refresh the browser and you’ll see that menu was removed from the form XE "form" automatically.

Now make a similar change to XE "to" prevent tasks being moved from one requirement to another in task.rb:

def update XE "update" _permitted? XE "update_permitted?"
 ((acting_user XE "acting_user" .signed_up? XE "acting_user.signed_up?" && acting_user.role == "coordinator") or acting_user.administrator?) and !Project.changed XE "changed" ? XE "changed?"
 end

Associations

Although we have modeled the assignment of tasks to XE "to" users, at the moment there is XE "is" no way for the user to set these assignments. We’ll add that to the task edit page. Create XE "Create" a task and browse to the edit page. Notice that only the description is editable.

Hobo XE "Hobo" does provide support for “multi-model” forms, but it is XE "is" not active by default. To specify that a particular association should be accessible to XE "to" updates from the form XE "form" , you need to declare :accessible => true on the association.

In task.rb, edit the has_many XE "has_many" :users association as follows:

has_many XE "has_many" :users, :through => :task_assignments, :accessible => true

Without that declaration, the permission system was reporting that this association was not editable. Now that the association is XE "is" “accessible”, the permission system will check for create and destroy permissions on the join XE "join" model TaskAssignment. As long as the current user has those permissions, the task edit page will now include XE "include" a nice JavaScript powered control for assigning users in the edit-task page. Notice you can continue to XE "to" assign users to a task and not leave the page:
[image: image158.png]Projects

Home | Projects

J users

odall@barquin com ¥

Edit Task
Name Documenttargettables
Requirement New nightly ETL for grant awards
Users Owen

Add User v

/‘

Figure 165: Assigning multiple Users to XE "to" a Task in the Edit Task page

View Hints" View Hints
Hobo XE "Hobo" has a great facility that makes it easy to XE "to" modify the display of a field name XE "name" , (without changing the model,) and field help that is XE "is" displayed in the edit form XE "form" , and to let Hobo know when you want to include XE "include" “child” entities on a page.

 Hobo XE "Hobo" creates a ViewHints XE "ViewHints" template file for each model you generate in the format XE "format" “{model_name XE "model_name"

 XE "name" }_hints”
[image: image159.png]viewhints

Fle Edt View Favortes Took

Help

O - © - (] Do [rots

address | Ciutoriabslprojctsiapplviewtints

project_hints requirement_fints

File and Folder Tasks Ruby Pragram Ruby Pragram
16 16
£ vake anew folder
@ Pubish thisFlder tothe vecirement_status_fints task_assignment_hints
web Ruby Program Ruby Program
2 share this older 1 16
task Fints
Ruby Program
Other Places 16

= e

Figure 166: Contents of the \apps\viewhints folder

Here is XE "is" what a blank one looks like:

 [image: image160.png]File Edit View Text Navigation Bundes Help

Project][] 0 protect_tintsab @

= A1 1fjclass Projectifints < Hob
5 E3 controlers

2
applcation_contrller b 3

2 Hrant_controler b 2 Uena
projcts._controler.b s

%2 reaurements_controler.tb
tasks_controler b
%2 wsers_controler b

5 hepers
= (3 models

¥ guestrb

project.b
requrement.rb
taskrb 4
task_sssignment b
user s
%2 wser maler.b
5 £ viewhints
project_fints.b
requrement_hints.b
%2 task_assignment _hints.b
2 task_assignment_hits.1b

%2 task hints.tb
ot s A« b b A LI ke A NI o e

PUPSSIEN

Now add two additional lines like the following:

[image: image161.png]) « project_hints.b &5

1Gclass Projectints < Hobo

s evHints

3|| £ield nemes :name
4|| fieldnelp :name
s
6

“Project Name"
"Enter & neme for the project. Nake it short but descriptive”

lena

Figure 168: Defining “field_names XE "field_names" ” and “field_help” in ProjecHints

Refresh your browser and enter a new project:

 [image: image162.png]odall@barguin.com ¥

Projects

tome | Projects | Users

New Project

Project Hame [
Enter a name for the project. Make it short but descriptive

Figure 169: The New Project page using “ProjectHints”

Customizing views

It’s pretty surprising how far you can get without even touching the view layer. That’s the way we like to XE "to" work with Hobo XE "Hobo" -- get the models and controllers right and the view will probably get close to what you want. From there you can override just those parts of the view that you need to.

We do that using the DRYML XE "DRYML" template language, which is XE "is" part of Hobo XE "Hobo" . DRYML is tag based – it allows you to XE "to" define and use your own tags right alongside the regular HTML XE "HTML" tags. Tags are like helpers, but a lot more powerful. DRYML is quite different to other tag-based template languages, thanks to features like the implicit XE "implicit" context XE "implicit context"

 XE "context" and nestable parameters. DRYML is also an extension of ERB XE "ERB" so you can still use the ERB syntax if you are familiar with Rails.

DRYML XE "DRYML" is XE "is" probably the single best part of Hobo XE "Hobo" . It’s very good at high-level re-use because it allows you to XE "to" make very focused changes if a given piece of pre-packaged HTML XE "HTML" is not quite what you want.
Changing the Front Page

The first thing we are going to XE "to" do is XE "is" to change the front page. Let’s change the title of the app and the default message:

[image: image163.png]odall@barguin.com v

Projects || Users

Welcome to Projects

Congratulations! Your Hobo Rails App is up and running
o T customise this page: adit appviews front/index.dryml

Figure 170: The default application name XE "name" and welcome message

Edit /app/views/taglibs XE "taglibs" /application.dryml XE "application.dryml" :
[image: image164.png]Project

=D
=) controllrs
%2 applation_controler b
2 front_controler b
2 projtscortroler. b
2 requrements_contraler b
2 tasks _contrlle.b
2 users_contrcler. b
@€ hebers
&) modeks
s et
2 projctrb
2 requrement b
2 tasktb
2 tas_assignment. b
2 userth
2 user_maler b
= 3 viewhints
2 projct_hins b
= requrement_fints.
2 task_assignment_hins.b
2 task_assignment_fints.rb
2 tas hints.b
& £ vews
£ front
8] index.chyml
2] sunmary.dryml
2 lavouts
& projes
3 requirements
25 tagibs
& a0
&) themes
applcation.dryml
) tesks
@ 5 user_mater

[E3

y

Settings

[<include

“hobo />

<include sro="taglibs/auto/rapid/cards” />
<include sro="taglibs/auto/rapid/pages” />
<include sro="taglibs/auto/rapid/forns” />

\<set-thene naus

“clean”/>
<def tag="app-nane">The Agile Project Manager</def>

Home : The Agile Project Manager - Mozilla Firefox

Ele Edt View Hstory Bookmarks Ioos Help

O - % o (D oo

Most visited ¥ Getting Started (5. Latest Headines

=]

Home : The Agile Project Manager

The Agile Project Manager

Projects || Users

odall@barquin coi 2|

Welcome to The Agile Project Manager

Congratulations! Your Hobo Rails App is up and running
o T customise this page: adit appviews front/index.dryml

Lina: AN Plain Text

' Tab Size: 4 T

Figure 171: Changing the application name XE "name" in "application.dryml XE "application.dryml" "

Changing the value for the app-name tag here will change it anywhere that tag is XE "is" used throughout the application.

Now let’s change the rest of the page…

Bring up /app/views/front/index.dryml XE "index.dryml" in your editor:

[image: image165.png]() < index.dryml 3

15fcpage title-Hone>
2

5| <vouys class-reront-pagerss

a

i E—

60 <heater class-“content-heater>

7 <hlVelcone to <app-name/></hl>

o <ssction class="welcone-nessage">

B <u3>Congratulations! Your Hobo Rails App is up and rumning</hs>
100) <>

n <115To customise this page: edit app/vievs/front/inde. deyul</1i>
12 <>

1

1a < i User.comnt == 0 =%

1s nargin-top: 20px;“>There are no user scoowits - pleass provids the details of the site sduinistrator</hs
160) “qUser.new><e this. sxenpt_fron_sdit_checks - true
17 <sigmp-torn/>

1s </ac>

1s < ena >

2

2 <Jsection

22 U </header>

2|

240 <section class-content-body™>

25l <section

26 L </content:>

27| |

28 Lic/page>

25

This is XE "is" what it looks like before you change it. Now change it to XE "to" the following:

<page title="Home">

<body XE "body" : class="front-page"/>

<content XE "content" :>

 <header XE "header" class="content-header XE "content-header" ">

 <h1>"Powered by Hobo XE "Hobo" "</h1>

 <section class="welcome-message">

 <h3>Here is XE "is" what you can do:</h3>

 <ul XE "ul" >

 Create XE "Create" and maintain any number of Projects

 Associate Requirements to XE "to" each Project

 Assign Tasks and assign people to XE "to" complete each Task

 </ul XE "ul" >

 </section>

 </header XE "header" >

 </content XE "content" :>

</page>

Now refresh your browser:

[image: image166.png]odall@barguin.com v

The Agile Project Manager

Projects || Users

"Powered by Hobo"

Here is what you can do:
o Create and maintsin any number of Projects

o dssociste Requirements to esch Project

o hssign Tasks and sssizn people to complete each Task

Figure 173: Home page modified by changing "/front/index.dryml XE "index.dryml" "

Add Assigned Users to XE "to" the Tasks

Curretnly the only way to XE "to" see who’s assigned to a task is XE "is" to click the task’s edit link. It would be better to add a list of the assigned users to each task when we’re looking at a requirement.

DRYML XE "DRYML" has a feature called “polymorphic XE "polymorphic" ” tags. These are tags that are defined differently for different types of objects. Rapid makes use of this feature with a system of “cards”. The tasks that are displayed on the requirement page are rendered by the <card XE "card" > tag.

You can define custom cards for particular models. Furthermore, if you call <base-card> you can define your card XE "card" by tweaking the default, rather than starting from scratch. This is XE "is" what DRYML XE "DRYML" is all about. It’s like a smart-bomb, capable of taking out little bits of unwanted HTML XE "HTML" with pin-point strikes and no collateral damage.

The file app/views/taglibs XE "taglibs" /application.dryml XE "application.dryml" is XE "is" a place to XE "to" put tag definitions that will be available throughout the site. Add this definition to that file:

<extend tag="card XE "card" " for="Task">

 <old-card merge>

 <append-body:>

 <div class="users">

 Assigned users: <repeat:users join XE "join" =", "><a/></repeat><else>None</else>

 </div>

 </append-body:>

 </old-card>

</extend>

[image: image167.png][<include

rapid” plugin="hobo"/>

<include
include st
\<include

“taglibs/auto/rapid/cards" />
‘taglibs/auto/rapid/pages" />
“taglibs/auto/rapid/forus"/>

<set-thene name="clean/>

<def tag="app-nane">The Agile Project Mamager</def>

<extend tag="card” for="Task">
<old-card merge>
<append-body:>
<div class="users™>
Assigned users: <repeatiusers jois
</iv
</append-body:>
</old-cara>
</extend>

| "><a/></repeat><elaesiones/else>

Figure 175: Extending the card XE "card" tag for Task in "application.dryml XE "application.dryml" "

Now refresh the requirement page. You’ll see that in the cards for each task there is XE "is" now a list of assigned users. The users are clickable - they link to XE "to" each user’s home page (which doesn’t have much on it at the moment).

[image: image168.png]odall@barguin com

The Agile Project Manager

Home M Projects [Users

« REEIS Development

Edit Requirement

New nightly ETL for grant awards

switch to using Talend from PL/SQL
Status

Tasks

Document target tables Edit
2 Task Assignments
hssigned users: Owen, Edmund

Document all source tables Edit

0 Tsk Assignments
Assigned users: None

Figure 176: Viewing assigned users on a the Task card XE "card"
The <extend> tag is XE "is" used to XE "to" extend any tag that’s already defined. The body XE "body" of <extend> is our new definition. It’s very common to want to base the new definition on the old one, for example, we often want to insert a bit of extra content XE "content" as we’ve done here.

We can do that by calling the “old” definition, which is XE "is" available as <old-card>. We’ve passed the <append-body:> parameter to XE "to" <old-card>, which is used to append content XE "content" to the body XE "body" of the card XE "card" .

Some points to XE "to" note:

The <repeat> tag provides a join XE "join" attribute XE "attribute" that we use to XE "to" insert the commas. The link is XE "is" created with a simple empty <a/>. It links to the ‘current context XE "context" ’ which, in this case, is the user. The :users in <repeat:users> switches the context. It selects the users association of the task.

DRYML XE "DRYML" has a multi-purpose <else> tag. When used with repeat, it provides a default for the case when the collection XE "collection" is XE "is" empty.

Add a Task Summary to XE "to" the User’s Home Page

Now that each task provides links to XE "to" the assigned users, the user’s page is XE "is" not looking great. Rapid has rendered cards for the task-assignments but there’s no meaningful content XE "content" in them. What we’d like to see there is a list of all the tasks the user has been assigned to. Having them grouped by requirement would be helpful too.

To achieve this we want to XE "to" create a custom template for users show page. If you look in app/views/users you’ll see that it’s empty. When a page template is XE "is" missing, Hobo XE "Hobo" tries to fall back on a defined tag. For a ‘show’ page, that tag is <show-page>. The Rapid library provides a definition of <show-page>, so that’s what we’re seeing at the moment.

As soon as we create app/views/users/show.dryml XE "show.dryml" , that file will take over from the generic <show-page> tag. Try creating that file and just throw “Hello!” in there for now. You should see that the user’s show page now displays just “Hello!” and has lost all of the page styling.

If you now edit show.dryml XE "show.dryml" to XE "to" read ”<show-page/>” you’ll see we’re back where we started. The <show-page> tag is XE "is" just being called explicitly instead of by convention.

Rapid has generated a custom definition of <show-page for="User">. You can find this in app/views/taglibs XE "taglibs" /auto/rapid/pages.dryml XE "pages.dryml" .

[image: image169.png]Fle Edt View Favortes Took Help

O - © - (] Do [rots

adress | Citutorabslprojects)applviewsitagibsiautolrapid

Nome ~ £
Fle and Folder Tasks () [(3] cords 218

[SJforms si6
£ Make anew folder o e

@ Publsh ths Flder tothe
e

7 shr tis okdr

Type
DRYML e
DRYML e
DRYML e

Date Modfied
4182009 7:18 AM
41182009 7:18 AM
4182009 7:18 AM

Don’t edit this file! Your changes will be overwritten. Instead, use this file as a reference so you can see what the page provides, and what parameters there are (the param XE "param" attributes XE "attributes").

Here is XE "is" the top of the file:

[image: image170.png]File Edt View Text Navigation Bundles Help
Project 8[|)+ pages.deyml -

2 proes A| 0 fci-- AUTONATICALLY GENERATED FIiE - DO NOT EDIT
0w 2
© contrlers 3 ke - Hain Havigation = g
2 hekers 3
& mocels 5Cj<aes tag-"nain-nav>
@ viewhints 60 <navigation class="hain-nav’ merge-attrs param="default”>
=3 vews]| <nav-iten href-"f(base_url)/">Hone</nav-iteus
= front 8 <nav-item with="sProject">Projects</nav-item>
mex drynl s <nav-iten with="sUser">Users</nav-itew
) summary.dryml 10l <mavigarion
) lavouts 11 esaees
) proecs 2
) requrements a5
53 tagbs 1a - Project Pages -
5Dt 15
= rapid 160)cdet tag="index-page” for="Project”
) cards.dryrl 17| <page nerge title="#iht 'projects.index. title’, :defaults>['Projects'])"
) forms.dryml 15| <body: class="index-page project” paran/>
) pages.crymi 1
22 themes 206 <content: paraws
(=) application.ryml 216 <header param="content-header">
D tess 220 hz parau-headings
) user_maler 23] <h. key="projects, index. heading”>
S users 23 Projects
& config s </t
s 26 | <mz>

AR e g A o AN Lt S s At D A i B g i

Now find the “show-page” tag for User:

[image: image171.png]File Edit View Text MNavigation Bundies Help

Project

& prosects
=Y

£ controlers
© hepers
) moceks
) viewhits

&) views
£ front
) inderc cryml
5 summary.dryml
& bovous
) projests

5 reauirements
5 taglbs
EI=YTy

£ 6 repid
i carc cyml
5 forms.dryml
= pages.dryml

2 themes

5 appicaton.dryml
5 tasks

5 user_maler

5 users

& config

=1

O doc

=13

Slog

=& pubic

) habothemes

) images

© fovaserts

D styleshests

@) 40t himl

@ s2zhim

@ 00 himl

(3] faican.co

< robots.xt

5 sernt

3

Settings

1) + pages.drymi

sis
s20

S21Cicaet tag-rahov-page” for-Tasi>

522 || <page merge citle=n¥(ht rusers.shou.title’, idefaults>['ser'])7
523

s2a|| <woay: class-rshow-page user” paeus>

sz

s26g] <concenc: paran>

serc] LU —

szt e ——"

529 <t Key-"usscs. show. hesding” naRe-"cthis, cespond_to? (inane) 7 this.nane
530 <usmer>

s <>

sz <>

533

s34 <recora-flags fielas-"amistrator” paren/s

535

ssec] <a action"edit if-"ccan_edicy” paran-redit-link">
sa7 <Ht Key-"users. actions. Sd1t" naNe-"eChls. respond_to? (inaus) ? Chis.uame ©
s Faic User

s <>

sa0 <o

sa1 L </header>

sz

sasc] <section parau-“content-body>

sas <field-list fieldsrole, ematl_sdiress” paran/>
sasg] collection section™

sast] “collection heading’>

sarc] usexs. collection. heating. your” >

sas tone/>Task Assigmmencs

sas <>

ss0 L </h3>

551

sz <eollecrion: task_sssiguments pazen/>

553 <section

ssa L) </section>

555 L| </content:>

ss

57| <spage>

<5 /e

ss9

oo

s

s

Figure 179: The auto-generated XE "auto-generated" "show-page" tag for User in "pages.dryml XE "pages.dryml" ”

Now let’s get the content XE "content" we’re after - the user’s assigned tasks, grouped by requirement. It’s only five lines of markup to XE "to" put in a file \views\users\show.dryml XE "show.dryml" .

<show-page>

 <content-body XE "content-body" :>

 <h3><Your/> Assigned Tasks</h3>

 <repeat with="&@user.tasks.group_by(&:requirement)">

 <h4>Requirement: </h4>

 <collection XE "collection" />

 </repeat>

 </content-body XE "content-body" :>

</show-page>

[image: image172.png]File Edt View Text Navigation Bundles

Project

Help

2 proats
=Y

£ controlers
© hepers
) moceks
) viewhits

&) views
& Front
3 loyous
) projests

) reurements
& tagibs
EI=YTy
£ rapid
i carc cyml
5 forms.dryml
= pages.dryml
1= pges.crymibsk
2 themes
(S appication.cryml
5 tasks
& 5 user_maier
[forgct_password.erb
=6 users
2 show.dryml

[F]
B
2
3
3
5
s
7
8
B

showdryml
brou-page>
<content-body:>
<t <Touc/> Assigmed Taska</no>
Crepest with-"cBuser. casks. growp_by (e: requizensnt] >
<nRequirenent: <a vithcthis_Key"/></nb>
<eortections>
</repeacs
</content-boay:>
</shou-page>

B T . S 1 A Anehasta R L At cnn . an s s b s

This will override the definition in pages.dryml XE "pages.dryml" and display a page similar to XE "to" the following:

[image: image173.png]el PN | Logeed inasOwen Account Log out

The Agile Project Manager

Home Projects Users

Owen Edit User

Administrator

Your Assigned Tasks
Requirement: New nightly ETL for grant awards

Document target tables edit

2 Task Assignments
Assigned users: Owen, Edrmund

Document all source tables Edit

2 Task Assignments
Assigned users: Owen, Ishita

Requirement: Add Institution filter to the data marts
Document user requirememts edit

1 Task Assignment
Assigned users: Owen

Figure 180: View of the enhanced User "show-page"

The <Your> tag is XE "is" a handy little gadget. It outputs “Your” if the context XE "context" is the current user, otherwise it outputs the user’s name XE "name" . You’ll see “Your Assigned Tasks” when looking at yourself, and “Fred’s Assigned Tasks” when looking at Fred.

We’re using <repeat> again, but this time we’re setting the context XE "context" to XE "to" the result of a Ruby expression (with="&...expr..."). The expression

@user.tasks.group_by(&:requirement)

gives us the grouped tasks. Inside the “repeat this” (the implicit XE "implicit" context XE "implicit context"

 XE "context") will be an array of tasks, and this_key will be the requirement.

So gives us a link to XE "to" the requirement. <collection XE "collection" > is XE "is" used to render a collection of anything in a <ul XE "ul" > list. By default it renders <card XE "card" > tags. To change this, just provide a body XE "body" to the <collection> tag. Now click on the Users tab to see a summary of tasks for all users:

[image: image174.png][LE(GER TN | Logsed inas Owen Account Log out

The Agile Project Manager

Projects

Users

There are 3 Users

New User

Owen
3 Task Assignments

Edmund
1 Task assignment

Ishita
1 Task Assignment

Figure 181: The Users tab showing all assignments

Now you can get the big picture of all user assignments.

This is XE "is" a lot to XE "to" take in all at once. The main idea here is to give you an overview of what’s possible. See The DRYML XE "DRYML" Guide XE "DRYML Guide" for more in-depth information:

http://cookbook.hobocentral.net/manual/dryml-guide
Improve the Project Page with a Searchable, Sortable table

The project page is XE "is" currently workable, but we can easily improve it a lot. Hobo XE "Hobo" Rapid provides a tag called <table-plus> which:

· Renders a table with support for sorting by clicking on the headings
· Provides a built-in search XE "search" bar for filtering the rows displayed
· Searching and sorting are done server-side so we need to XE "to" modify the controller as well as the view for this enhancement.
As with the user’s show-page, to XE "to" get started put a simple call to <show-page/> in app/views/projects/show.dryml XE "show.dryml"
To see what this page is XE "is" doing, take a look at <def tag="show-page" for="Project"> in pages.dryml XE "pages.dryml" . (app/views/taglibs XE "taglibs" /auto/rapid). Notice this tag:

<collection XE "collection" :requirements param XE "param" />

That’s the part we want to XE "to" replace with the table. Note that when a param XE "param" attribute XE "attribute" doesn’t give a name XE "name" , the name defaults to the same name as the tag.

Here’s how we would replace that <collection XE "collection" > with a simple list of links:

<show-page>

 <collection XE "collection" : replace>

 <div>

 <repeat:requirements join XE "join" =", "><a/></repeat>

 </div>

 </collection XE "collection" :>

</show-page>

You should now see that in place of the requirement cards, we now get a simple comma-separated list of links to XE "to" the requirements. Not what we want of course, but it illustrates the concept of replacing a parameter. Here’s how we get the “table-plus”:

<show-page>

 <collection XE "collection" : replace>

 <table-plus :requirements fields="this, status">

 <empty-message XE "empty-message" :>No requirements match your criteria</empty-message:>

 </table-plus>

 </collection XE "collection" :>

</show-page>

The fields attribute XE "attribute" to XE "to" <table-plus> lets you specify a list of fields that will become the columns in the table. We could have specified fields="title, status" which would have given us the same content XE "content" in the table, but by saying this, the first column contains links to the requirements, rather than just the title as text.

We could also add a column showing the number of tasks in a requirement. Change to XE "to" fields="this, tasks.count, status" and see that a column is XE "is" added with a readable title “Tasks Count”.

[image: image175.png]odall@barguin.com ¥

The Agile Project Manager

Home I Projects I Users

REEIS Development Edit Project

Requirements

Search [co |
e w1

New nightly ETL for grant awards

Add Institution filter to the data marts

New Requirement

To get the search XE "search" feature working, we need to XE "to" update XE "update" the controller side. Add a show method XE "method" to app/controllers/projects_controller.rb like this:

def show

 @project = find_instance

 @reqlist =

 @project.requirements.apply_scopes(:search XE "search" => [params XE "params" [:search], :title],:order XE "order" _by XE "order_by" => parse_sort_param XE "parse_sort_param"

 XE "param" (:title, :status))

end

What we are doing is XE "is" creating two instance variables XE "instance variables" that will hold the values in memory between the controller and view.

@project = Holds the information for the project that has just been clicked

@reqlist = A variable name XE "name" we chose to XE "to" hold the list of projects returned by the apply_scopes method XE "method" .

If there are no values in the search XE "search" params XE "params" , all requirements for that project are returned. The first time the projects page is XE "is" loaded params will be null.

 Then get the <table-plus> to XE "to" use @requirements:

<table-plus with="&@reqlist" fields="this, tasks.count, status">

[image: image176.png]] show.dryml 3

1<shou-page>
20] <collection: replace>

30] <table-plus with="sfreglist” fields="this, tasks.count, status™
a <empty-nessage:>lo requirenents match your criteria</empty-nessage:>
5 </table-plus>

61 <seollection:>
7 L</shou-page>

Now enter a word in the Search box and see how the requirement list is XE "is" filtered:

[image: image177.png]odall@barquin.com ¥

The Agile Project Manager

Home I Projects I Users

REEIS Development

Edit Project

Requirements

Search grant [co |

Requirement Tasks Count

New nightly ETL for grant awards 4

New Requirement

Figure 184: Using a search XE "search" within the Requirements listing

Other Enhancements

We’re now going to XE "to" work through some more easy but very valuable enhancements to the application. We will add:

· A menu for requirement statuses. We’ll do this first with a hard-wired set of options XE "options" , and then add the ability to XE "to" manage the set of available statuses.
· Filtering of requirements by status on the project page
· Drag and drop re-ordering of tasks for easy prioritization.
· Rich text formatting of requirements. This is XE "is" implemented by changing one symbol in the source code and adding the CKEditor XE "CKEditor" plugin.
Requirement Status Menu

We’re going to XE "to" do this in two stages. First using a fixed menu that will require a source-code change if you ever need to alter the available statuses. We’ll then remove that restriction by adding a RequirementStatus model. We’ll also see the migration XE "migration" generator in action XE "action" again.

The fixed menu is XE "is" very simple. Locate the declaration of the status field in requirement.rb (it’s in the fields do ... end block), and change it to XE "to" this:

status enum_string XE "enum_string" (:proposed, :accepted, :rejected, :reviewing, :developing, :completed) # etc..
Now the Edit Requirement page looks like this, with a select list:

[image: image178.png]odall@harquin.com - Account Lo out

The Agile Project Manager

Home Projects Users

Edit Requirement

Title New riightly ETL for grant awards

Body switch to using Talend from PL/SQL

Accepted
Rejected
Reviewing
Developing
Cornpleted
Status Proposed v

Figure 185: The Edit Requirement form XE "form" with selectable status codes

The menu is XE "is" working in the edit requirement page now. It would be nice though if we had an “AJAX-ified” editor right on the requirement page. Edit the file

 app/views/requirements/show.dryml XE "show.dryml"

to XE "to" be:

<show-page>

 <field-list XE "field-list" : tag="editor"/>

</show-page>

Now the page has an in-place editor that does not require a submit XE "submit" button update XE "update" .

[image: image179.png]el ot N M | Logeed inasOwen Account Log out

The Agile Project Manager

Home Projects Users

« REEIS Develapment

Edit Requirement

New nightly ETL for grant awards

switch to using Talend from PL/SQL

Status. Proposed v/
Tasks
Document target tables Edit
2 Task Assignments
Aassigned users: Owen, Edmund
Edit

Document all source tables
2 Task Assignments

gisigned Owen, Ishit
signed users: Owen, Ishita

Figure 186: Creating an AJAX status update XE "update" for Requirements

Simply select the new status, and a save is XE "is" automatically executed via an AJAX call.

How did Hobo XE "Hobo" do that? <show-page> uses a tag called <field-list XE "field-list" > to XE "to" render a table of fields. DRYML XE "DRYML" ’s parameter mechanism allows the caller to customize the parameters that are passed to <field-list>.

On our requirement page the field-list XE "field-list" contains only the status field. By default <field-list> uses the <view> tag to XE "to" render read-only views of the fields, but that can be changed XE "changed" by passing a tag name XE "name" to the tag attribute XE "attribute" . We’re passing the name “editor” which is XE "is" a DRYML XE "DRYML" tag for creating AJAX-style in-place editors.

Create XE "Create" a Configurable Status List

In order XE "order" to XE "to" support management of the statuses available, we’ll create a Requirement Status model:

> ruby script/generate XE "ruby script/generate" hobo_model XE "hobo_model" _resource XE "hobo_model_resource" requirement_status name XE "name" : XE "name:" string

Whenever you create a new model and controller with Hobo XE "Hobo" , get into the habit of thinking about permissions and controller actions XE "actions" .

In this case, we probably want only administrators to XE "to" be able to manage the permissions. As for actions XE "actions" , we probably only want the write actions, and the index page:

auto_actions XE "auto_actions"

 XE "actions" :write_only, :new, :index

Next, remove the status field from the fields do ... end block in the Requirement model and add the following association declaration:

belongs_to XE "belongs_to" :status, :class_name XE "name" => "RequirementStatus",
 :index => 'requirement_status_index'
Now run the migration XE "migration" generator

> ruby script/generate XE "ruby script/generate" hobo_migration XE "hobo_migration"

 XE "migration"
You’ll see that the migration XE "migration" generator considers this change to XE "to" be ambiguous and will prompt you for an action XE "action" .

Note. Whenever there are columns removed and columns added, the migration XE "migration" generator can’t tell whether you’re actually removing one column and adding another, or if you are renaming the old column. It’s also pretty fussy about what it makes you type. We really don’t want to XE "to" play fast and lose with precious data.
So, for the case at hand, to XE "to" confirm that you want to drop the ‘status’ column, you have to type in full: “drop status”.

Once you’ve done that you’ll see that the generated migration XE "migration" includes the creation of the new foreign key and the removal of the old status column.

That’s it. The page to XE "to" manage the requirement statuses should appear in the main navigation.

We’ve decided to XE "to" revise our list while entering them using the New Requirement Status page:

[image: image180.png]odall@barguin.com

The Agile Project Manager

Projects Requirement Statuses

Requirement Statuses

There are 8 Requirement Statuses

New Requirement Status

Accepted

Proposed

Reviewing

Rejected

Accepted

Developing

Testing

Completed

Now that we’ve got more structured statuses, let’s do something with them…

Reordering XE "Reordering" Tasks
We’re now going to XE "to" add the ability to re-order a requirement’s tasks by drag-and-drop. There’s support for this built into Hobo XE "Hobo" , so there’s not much to do. First we need the acts_as_list plugin:

> ruby script/plugin install acts_as_list

Now two changes to XE "to" our models:

Task needs:

acts_as_list :scope => :requirement

Requirement needs a modification to XE "to" the has_many XE "has_many" :tasks declaration:

has_many XE "has_many" :tasks, :dependent => :destroy, :order XE "order" => :position
The migration XE "migration" generator knows about the acts_as_list plugin, so you can just run it and you’ll get the new position column on Task which is XE "is" needed to XE "to" keep track of ordering for you.

> ruby script/generate XE "ruby script/generate" hobo_migration XE "hobo_migration"

 XE "migration"
Now refresh the application…

You’ll notice a slight glitch – the tasks position has been added to XE "to" the new-task and edit-task forms. Fix this by customizing the Task form XE "form" .

In application.dryml XE "application.dryml" add:

<extend tag="form XE "form" " for="Task">

 <old-form merge>

 <field-list XE "field-list" : fields="description, users"/>

 </old-form>

</extend>

On the task edit page you might also have noticed that Hobo XE "Hobo" Rapid didn’t manage to XE "to" figure out a destination for the cancel link. You can fix that by editing tasks/edit.dryml XE "edit.dryml" to be:

<edit-page>

 <form XE "form" :>

 <cancel: with="&this.requirement"/>

 </form XE "form" :>

</edit-page>

This is XE "is" a good demonstration of DRYML XE "DRYML" ’s nested parameter feature. The <edit-page> makes it’s form XE "form" available as a parameter, and the form provides a <cancel:> parameter.

We can drill down from the edit-page to XE "to" the form XE "form" and then to the cancel link to pass in a custom attribute XE "attribute" . You can do this to any depth.

Adding a Due Date to XE "to" Tasks
Let’s first add a good library of date and time validations:

> gem install validates_timeliness XE "validates_timeliness"
Next update XE "update" your config\environment.rb XE "environment.rb" file by adding the following line:

config.gem ‘validates_timeliness XE "validates_timeliness" ”

[image: image181.png]File Edit View Text Havigation Bundles Help

Project 84|) environmentsb &
) profects AI T [r B sure to restarc your server vhen you modify this file
=1 2
& 3 controlers 3 |# specifies gen version of Reils to use when vendor/rails is not present
@ helpers 4 [RATLS GEN VERSION = '2.3.2' unless defined? RATLS GEN VERSION
= 3 models 5
quest.b 6 |# Bootstrap the Rails envizomment, frameworks, and default configuration
projct.rb 7 |require File.join(File. dirname (_FIIE_), 'boot!)
ecirement b 8
rectirement status b SEjRails: Tnitializer.oun do lcontig]
task b 10| contig.gen ‘nobor
task _assignment b 11| config.gem 'walidates_tineliness'
usertb 2
2 user_maler b 13|| # seccings in config/envizoments/* take precedence over those specified here.
@ viewhints 14|| # Application configuration should go into files in config/initializers
0 views 15| # -- all .rb files in that directory are sutomatically loaded.
&3 corfig 1
& £ envionments 17| # Aaa sdaitional losd paths for your om custon dirs
® 3 tezers 18|| § config. Load patha += S(§(RATLS_ROOT) /exras)

=Y AP R * SN ST i s b NNt e A i s Do

Figure 187: adding the "validates_timeliness XE "validates_timeliness" " gem to XE "to" "environment.rb XE "environment.rb" "

Now update XE "update" your Task model with a due date, and add this validation for that date field:

validates_date :due_date, :on_or_after => Date.today
[image: image182.png]< Dtaskab @

iFjclass Task < ActiveRecord::Base
2

3| nopo_model # Don't put anyching above this

4

S5 fields do

6] neme :string

|| due_date :date, :required

8| cinestawps \
ol ena

10
11| valtdaces_dace :aue_date, son ox_atter => Date.sodsy 4
12

13| belongs_to :requirement, :index => 'requirement_task_index'

Caall haz ngn: task assignnents.. s ienendaDie 3 AGEHEAK . v, oaetet b e, ot st S90S

Figure 188: Task model with "due_date" and a validation for the date

[image: image183.png]odall@barguin.com

The Agile Project Manager

Home Projects Requirement Statuses Users

Edit Task

Remove This Task

To proceed please correct the following:

= Due date must be

Name. Docurnent target tables

Due Date 2008 v] [November v][12 ¥][15 ¥][a1 ~
Position

Requirement New nightly ETL for grant awards v

Figure 189: Error message from trying to XE "to" enter a date earlier than today

Tutorial 18 – Using CKEditor XE "CKEditor" (Rich Text XE "Rich Text") with Hobo XE "Hobo"
By Tola Awofolu
CKEditor XE "CKEditor" is XE "is" the new rich text editor that replaces the popular FCKeditor used by many web developers for years.

To use CKEditor XE "CKEditor" (3.x):
Download CKEditor XE "CKEditor" from the download website: http://www.ckeditor.com
Extract the download from Step 1 to XE "to" a new directory, public/javascripts/ckeditor in your Hobo XE "Hobo" application from the website:

[image: image184.png]Fle Edt View Favortes Toos Help

O - O (B Do i ros | (-

 acess |2 C:HoboAppsiich text_testipubleljavascriptsickedtor

Name ~
File and Folder Tasks 2) N & docs
£ vake anew flder gi:g’(‘:s
2 share this older St
Simages
Slang
Other Places
Srugns
& fevesrts S
themes
Wy Documents
Qw heaccess

iy Computer

3y NetwerkPaces [

Scodiorpock
Slcedior bosic

elcraces

Details

edior_basc snrces
ckeditor D et soweass
o [Beonfors

Date Modfiec: Today, August conterts.css
06, 2009, 1:26 PM (@] LICENSE htmi

ES

1Ke
218
255K8
7%
7%
218
218
1Ke
1Ke
70k8

Type
File Folder

File Folder

File Folder

File Folder

File Folder

File Folder

File Folder

File Folder

File Folder
HTACCESS Fle
HTML Document
I5eript Script File
PACKFle

I5eript Script File
I5eript Script File
I5eript Script File
I5erip Seript Fie
Cascading Style Sh,
HTML Document

Date Modfied
8/6/2009 1:26 P
8/6/2009 1:26 P
8/6/2009 1:26 P
8/6/2009 1:26 P
8/6/2009 1:26 P
8/6/2009 1:26 P
8/6/2009 1:26 P
8/6/2009 1:26 P
8/6/2009 1:26 P
62212009 8:43 P
6/22/2009 8:43 P
6/22/2009 8:43 P
6/22/2009 8:43 P
6/22/2009 8:43 P
6/22/2009 8:43 P
6/22/2009 8:43 P
6/22/2009 8:43 P
6/22/2009 8:43 P
612212009 8:43 P

Figure 190: CKEditor XE "CKEditor" source folder listing
Add the following file, load_ckeditor.js, to XE "to" the public/javascripts directory of your Hobo XE "Hobo" application:

HoboCKEditor = {

 newEditor : function(elm, buttons) {

 if (elm.name XE "name" != ‘’) {

 oInstance = CKEDITOR.replace(elm.name XE "name" ,

 { toolbar : HoboCKEditor.standardToolbarConfig || buttons }

);

 oInstance.setData(elm.value);

 oInstance.resetDirty();

 }

 return oInstance;
},

makeEditor : function(elm) {

 if (!elm.disabled && !elm.readOnly){

 HoboCKEditor.newEditor(elm);

 }

 },

standardToolbarConfig: [['DocProps','-','Preview','-','Templates'],

 ['Cut','Copy','Paste','PasteText','PasteWord','-','Print','SpellCheck'],

 ['Undo','Redo','-','Find','Replace','-','SelectAll','RemoveFormat'],

 [],

 '/',

 ['Bold','Italic','Underline','StrikeThrough','-','Subscript','Superscript'],

 ['OrderedList','UnorderedList','-','Outdent','Indent','Blockquote'],

 ['JustifyLeft','JustifyCenter','JustifyRight','JustifyFull'],

 ['Link','Unlink'],

 ['Image','Rule','SpecialChar','PageBreak'],

 '/',

 ['Style','FontFormat','FontName','FontSize'],

 ['TextColor','BGColor'],

 ['FitWindow','ShowBlocks','-','About']]

 }
 Hobo XE "Hobo" .makeHtmlEditor = HoboCKEditor.makeEditor
Notice that the “standardToobarConfig” portion of this JavaScript customizes the CKEditor XE "CKEditor" toolbar options XE "options" . Read XE "Read" the CKEditor documentation for more options you may wish to XE "to" add.

This code also replaces the normal text box with the rich-text editor, as long as the text box is XE "is" an HTML XE "HTML" “textarea” tag that includes this HTML attribute XE "attribute" in the tag definition: class= ‘large’

Here’s an example of HTML XE "HTML" markup that would be replaced:

<textarea id= “contact[notes]” class= “contact large”/>
This HTML XE "HTML" markup is XE "is" automatically generated by Hobo XE "Hobo" for fields defined with the :html symbol in the model:

[image: image185.png]class Contact < ActiveRecord::Base
hobo_nodel # Don't put anything above this

fields do
nene :string
notes :html
tinestaups
end

#Pernissions]

Figure 191: Using the ":html" field option to XE "to" trigger rich-text editing
Add the following lines of code to XE "to" app/views/taglibs XE "taglibs" /application.dryml XE "application.dryml" :

<extend tag="page">
 <old-page merge>
 <after-scripts:>
 <javascript name XE "name" ="ckeditor/ckeditor"/>
 <javascript name="load_ckeditor"/>
 </after-scripts:>
 </old-page>
</extend>

[image: image186.png]application. dryml * SciTE
Fie Edt

| L contact.rb | 2 applcation.drymi *

Search View Tools Options Langusge Buffers Help

<include sre="rapid" plugin="hobo"/>

<include sre="taglibs/auto/rapid/cards"/>
<include sre="taglibs/auto/rapid/pages’/>
<include sre="taglibs/auto/rapid/forms"/>

<set-theme name="clean"/>

<def tag="app-name">Rich Text Test</def>

<extend tag="page">
<old-page merge>
<after-scripts:>
<javascript name="ckeditor/ckeditor'/>
<javascript name="load_ckeditor'/>
</after-scripts: >
</old-page>
</extends

Figure 192: Adding the required CKEditor XE "CKEditor" references in application.dryml XE "application.dryml"
Now refresh your browser. Any field with the type “html” will now be displayed with an editor similar to XE "to" the following:

[image: image187.png]Rich Text Test

Home Contacts

New Contact

Name

Notes

L E 48@E@ & « HE He

BIU xx X a8 Bo=
S O &
@

Bold

talic

Underined and tiaic

RO ST NP S S U P

Figure 193: Sample Hobo XE "Hobo" form XE "form" using CKEditor XE "CKEditor"
Tutorial 19 – Using FusionCharts XE "FusionCharts" with Hobo

By Marcelo Giorgi

Many times we need to XE "to" present to the user a nice visual presentation of some measure about our data that we need to check. We can achieve this, by using charts or graphs, and FusionCharts XE "FusionCharts" (http://www.fusioncharts.com/) are an excellent way to go!

Basically, FusionCharts XE "FusionCharts" offers a wide range of flash components XE "flash components" that renders Charts XE "Charts" of various types. The way we have to XE "to" feed those flash components with our data is XE "is" to create an XML XE "XML" file (with an specific format XE "format" and semantics understood by FusionCharts) and then setting the URL for that file so that the Flash component (running on the client browser) can reach it.

In this tutorial, we start assuming you completed the last tutorial with the project called four_table. This way, we can leverage the existing models, and just focus on the Chart functionality. We’ll be adding two charts to XE "to" the project: i) Recipes By Country (which counts the number of recipes for each country) and ii) Recipes by Category (counts the amount of recipes grouped by categories).

Setting-Up FusionCharts XE "FusionCharts" in our Hobo application

First thing we need in order XE "order" to XE "to" use FusionCharts XE "FusionCharts" , is XE "is" to submit XE "submit" a form XE "form" within http://www.fusioncharts.com/Download.asp, as shown below.
[image: image188.jpg]Add interactive data visualization
to your web applications

= English = Quick Links

General Links Download Trial

Home «
Please fill in the form below to download

Product Overview «

Product Tour «
“Name Marceln Giorgi
Chart Gallery «

* Email
Online Demos « marcelo@email com
Dowrload « Organization marklazz

Version History ¢ URL it/ pwww. marklazz.carm]

Success Stories

Case Studies « * Mandatory Fields

License & Purchase
Download information
Buy Online «

Cicensnoiatiiing o FusionCharts Trial is & no-restriction evaluation of the actual component i.e.,
there are no days and festure limitations in this trial. The only difference is that
i the trial version charts, "FusionCharts” and "InfoSoft Global” imprints would be
present on the charts, Once you purchase a license, these imprints would be,

Othar Prodicts sutomatically removed

Fusioniwidgsts v3 « ou can use the Evaluation version only for testing purposes, It cannot be
deplayed to any production website. Read our Privacy Policy

OEM Information «

FusionMaps v3 «

PowerCharts va «

) A T

Figure 194: Registration form XE "form" to XE "to" request FusionCharts XE "FusionCharts"
After clicking on Download, you can download an evaluation copy.

[image: image189.jpg]' = English = Quick Links

General Links

Home «
Product Overview «
Product Tour «
Chart Gallery «
Online Demas «
Download «

Versian History «

Success Stories

Testimanials <«

Case Studies «

License & Purchase

Buy Online «
Licensing & Pricing «

OEM Information <

Other Products
FusionWidgets v3 «

FusionMaps v3 <«

PowerCharts va «

User Community

Community Showcase «

Implementation Partners «

Support Ifo

Discussion Forum «

Online Documentation «

Download Trial Versions & Blueprint Apps

Using the links given below, you can download trial versions of
FusianCharts Suite

after download of trial versions, we recommend that you download
FusionCharts blueprint applications, which we provide in multiple
programming languages. These applications contain beginner to
advanced level codes that illustrate how to best use our products.

version Download Links

» Bownioad FusionCharts v3 Evaluation
» Fusionwidgets v3 Evaluation
» FusionMaps v3 Evaluation

» PowerCharts Evaluation

» also download Blueprint applications

How do | Install?

o after downloading the files, extract the zip file it into a folder.

© Run the Tndex. henl file present at the root of the extracted folder to
open the documentation,

Traverse through the documentation in the order Introduction >
Installation to reach the installation page.

Ga through the installation page for detailed usage instructions.

Recommended download: FusionCharts Blueprint applications

Download FusionCharts lueprint applications in various languages lie
VB .NET, C#, ASP, PHP, ColdFusion, 5P etc. to quickly learn how to
implement FusionCharts in your solutions. Please choose your
programming language from the list below.

» PHP + MySQL Version

» PHP (Using FusionCharts PHP API) + MySQL Version
» ASP + MS SQL / MS Access Version

Figure 195: Download page for FusionCharts XE "FusionCharts"
.

After downloading (and decompressing it under, say in c:\FusionChartsDistribution) the trial version provided by the site (or a purchased one), there 2 steps that we must follow in order XE "order" to XE "to" complete the FusionCharts XE "FusionCharts" installation within our Hobo application:

1. Copy all swf files contained in the directory c:\FusionChartsDistribution\Charts XE "Charts" to XE "to" the public directory of our Hobo application, for simplicity we will paste them under app/public/FusionCharts XE "FusionCharts" directory.

2. Next, we should copy the file under c:\FusionChartsDistribution\JSClass\FusionCharts XE "FusionCharts" .js to XE "to" app/public/javascripts folder.

[image: image190.jpg]Carpetas

& D agilty-gitorial A |

Cl=F-

A=

& (3 config
ST
D doc
=

& 3 public
12 Fusior

& D hobot
122 image
D javas,
2D styles

1D seript

D test

& (B vendor

x

[AW

images

s00
Documento HTHL
Ike

]

javascrpts

Favicon
Icono

Figure 196: Target location for the FusionCharts XE "FusionCharts" swf filles
3. Finally, we are ready to XE "to" reference the Javascript file (copied in Step 2) in our application.dryml XE "application.dryml" file, as follows:
[image: image191.jpg]<include src="rapid" plugin="hobo"/>

<include sre="taglibs/auto/rapid/cards"/>
<include sre="taglibs/auto/rapid/pages’/>
<include sre="taglibs/auto/rapid/forms"/>

<set-theme name="clean’/>
<def tag="app-name">Four Tables, No Waiting</def>

<extend tag='page'>
<old-page merge>
<before-scripts:>
<javascript nam
</befare-scripts: >
</old-page>
2 rastonds

usionCharts' />

Figure 197: Adding the required <extend tag=’page’> definition in application.dryml XE "application.dryml"
As you can see from the code of application.dryml XE "application.dryml" ,we extend the ‘page’ view so that we always include XE "include" the javascript file FusionCharts XE "FusionCharts" .js. We could include this javascript at a page level, but for the purposes of this tutorial seemed more practical to XE "to" do it this way.
Adding sample data

Before implementing the chart functionality, I’ve just created a random set of data to XE "to" feed our charts, as you can see from the following picture:

[image: image192.jpg]Four Tables, No Waiting

Categories [Countries

My Recipes

There are 14 Recipes

New Recipe

Search Go

Omelet 2 Sour, Hot American
Cake 1 Sweet American
Piza 2 Hot, Spicy Italy
Beets with pistachio 2 Sour, Hot taly
Spaghetti alla carbonara 2 Hot, Spicy aly
Ricotta with honey 1 Sweet American
Misticanza salad 1 Salad aly
Chivito. 2 Hot, Salty. Uruguay
French fries 2 Hot, Salty. France
Dulce de leche. 1 Sweet Uruguay
Chil pepper 2 Hot, Spicy Mexico
Turkey and tomato 2 Salad, Salty. Mexico
Guava 1 Sour Mexico

Macaroni 1 Hot aly

Figure 198: Screen shot of sample recipe data for the tutorial

It is XE "is" probably better to XE "to" use the data presented here to make sure your charts would look the same as the ones for this tutorial. But, after that, feel free to change the values so you can see different chart types and options XE "options" !

Recipes By Country

Mainly, in order XE "order" to XE "to" implement this chart, we would need to complete two steps:

1. Save the data to XE "to" an XML XE "XML" file
2. Configure the Flash Component to XE "to" retrieve the generated data.
1. Save the data to XE "to" an XML XE "XML" file

For our first chart we need to XE "to" modify the RecipesController.rb, in order XE "order" to save the data (XML XE "XML" file) needed by the FusionCharts XE "FusionCharts" Flash component. In our particular case, we will put both Charts XE "Charts" within the index.dryml XE "index.dryml" view (/recipes path) as they both reflect information concerned with the collection XE "collection" of Recipes.

recipes_controller.rb -----

class RecipesController < ApplicationController

 hobo_model XE "hobo_model" _controller XE "hobo_model_controller"
 before_filter XE "before_filter" :save_fusion_chart_data, :only => [:index]

 auto_actions XE "auto_actions"

 XE "actions" :index, :show, :new, :edit, :create, :update XE "update" , :destroy

 belongs_to XE "belongs_to" :category

 belongs_to XE "belongs_to" :recipe

As you can see (modifications are highlighted in bold italics), we add a new filter to XE "to" store the XML XE "XML" file only when we receive a request for the index page.

Now we must define the function save_fusion_chart_data for this controller, in particular, we implement it like this:

1 private

2 def save_fusion_chart_data

3 @recipies_count_by_countries = Recipe.find(:all, :select => 'country_id, count(*) as counter', :group => 'country_id')

4 filename = "#{RAILS_ROOT}/public/recipies_count_by_countries.xml"

5 xml_string = render_to XE "to" _string(:partial => 'chart_data_generator_for_count_by_country')

6 save_xml_file(filename, xml_string)

7 end

8 def save_xml_file(filename, data)

9 FileUtils.rm(filename, :force XE "force" => true)

10 f = File.new(filename, 'w')

11 f.write(data)

12 f.close

13 end

Let’s go through this code:

· In line #3, we define an instance variable that resolves the query of how many recipes are for each country. (You may be thinking that it would be better to XE "to" encapsulate that behavior within Recipe’s model, perhaps using a named_scope XE "named_scope" . I agree with you! But again, I’m still focusing on the implementation of FusionCharts XE "FusionCharts" functionality for this tutorial, so refactoring is XE "is" your homework!)ß

· In line #4 we define the local path (from the Server point of view) where the XML XE "XML" data file will be stored. As you can see, we are pointing to XE "to" the public directory of the Hobo application, and that’s necessary because the file must be available so that the FusionCharts XE "FusionCharts" Flash component (on the client side) can load it.

· Line #5 is XE "is" critical for this tutorial. Using the render_as_string method XE "method" (included in Rails), it generates an XML XE "XML" string (based on the instance variable defined in line #3) with the appropriate semantics that FusionCharts XE "FusionCharts" needs.

· The final step, line #6, saves the string stored in the variable xml_string (which represent an XML XE "XML" file) into the path received as parameter.

Now, it’s time to XE "to" review the implementation of the partial that generates the XML XE "XML" string. Let’s look at the code below.

recipes/_chart_data_generator_for_count_by_country.builder -----
1 xml.instruct!

2 xml.chart :caption => 'Recipies Count by Country' do

3 @recipes_count_by_countries.each do |recipe|

4 xml.set(:label XE "label" => recipe.country.name XE "name" , :value => recipe['counter'])

5 end

6 end

This builder extension instructs Rails to XE "to" use the XML XE "XML" Builder component, so that we have the xml object, which is XE "is" an instance of XmlBuilder, available that we use to build the XML structure. Documentation can be found at:

http://api.rubyonrails.org/classes/Builder/XmlMarkup.html
This code jdefines a chart XML XE "XML" element (line #2), and then for each instance of the collection XE "collection" @recipes_bount_by_countries it adds (within XML chart element) a set XML elements that contains both the name XE "name" of the Country and a counter for the number of recipes for that entry.

Below we can check out a sample generated with that builder:

<?xml version="1.0" encoding="UTF-8"?>

<chart caption="Recipes Count by Country">

 <set label XE "label" ="American" value="3"/>

 <set label XE "label" ="Uruguay" value="2"/>

 <set label XE "label" ="Mexico" value="3"/>

 <set label XE "label" ="Italy" value="5"/>

 <set label XE "label" ="France" value="1"/>

</chart>

2. Configure the Flash Component to XE "to" retrieve the generated data

At this point, we have the data needed by our FusionCharts XE "FusionCharts" Flash Component ready to XE "to" be used. We just need to instruct our FusionCharts Flash Component, by means of the Javascript API available (thanks to the included file FusionCharts.js), to load it.

Here we show a simple snippet of recipes/index.dryml XE "index.dryml" that exemplifies how we can accomplish that:

[image: image193.jpg]File Edit Search View Tools Options Language Buffers Help

Lindex.drym * |2 recipes_controler b | 3 _chart_data_generator_for_count_by_category.bulder

1 <index-page >

2 <collection: replace>

3 <divs

4 <table-plus fields="this, categories.count, categories, country'/>

5 </div>

6 </collection:>

7 <after-content:>

8 <div id="recipes_count_by_countries'>

g </div>

10 <script>

1 var chart_recipes_by_countries = new FusionCharts('http://localhost: 3000/FusionCharts/BaraD. swF, 'Recipes_Countries_Chart', '1000, '400);
12 chart_recipes_by_countries. setDataURL(http: //localhost: 3000/recipes_count_by_countries. sml);
13 chart_recipes_by_countries.render('recipes_count_by_countries');

14 </script>

15 </after-content:>

16 </index-page>

17

18

Figure 199: Content of recipes/index.dryml XE "index.dryml" used to XE "to" render the FusionChart

· First thing to XE "to" notice is XE "is" that we define a div element (with id equal to recipes_count_by_countries), at line #8, intended to be the placeholder of the chart.

· Next, we make use of the Javascript API of FusionCharts XE "FusionCharts" by creating a FusionCharts object at line #11.

· The first parameter for the constructor is XE "is" the particular Chart type that we are going to XE "to" use. In this particular case, we will be using a Bar chart.

· The second parameter is XE "is" used to XE "to" identify this Chart, if you are going to use advanced features of the Javascript API.

· The third and forth parameters indicate the dimensions (width and height respectively) of the chart.

· Finally, in line #13, we instruct FusionCharts XE "FusionCharts" to XE "to" render the chart within the DOM element with id equal to recipes_count_by_countries.
Ant that’s it!!! Just go to XE "to" the browser and request the URL: http://localhost:3000/recipes, and you’ll see, at the bottom of the view, a chart similar to the following:

[image: image194.jpg]FusionCharts Evaluation - An InfoSoft Global Creation

Recipies Count by Country.

Amarizan 3

Uruguay

Masica

ealy

France

Figure 200: Screen shot of rendered FusionCharts XE "FusionCharts" bar chart XE "bar chart"
Recipes By Category

Now, it would be interesting to XE "to" render a different type of Chart. A typical choice would be a pie chart XE "pie chart" . The good news is XE "is" that it’s pretty much the same effort as the previous chart, because it uses the same type of XML XE "XML" data as input. For that reason, I’ll be focusing on the differences for this new chart.

1. Save the data to XE "to" an XML XE "XML" file

We are going to XE "to" use the same mechanism presented earlier in this tutorialto store the XML XE "XML" file. In fact, we’ll be modifying the method XE "method" save_fusion_chart_data of recipes_controller.rb, this way:
recipes_controller.rb -----

1 private

2 def save_fusion_chart_data

3 @recipies_count_by_countries = Recipe.find(:all, :select => 'country_id, count(*) as counter', :group => 'country_id')

4 filename = "#{RAILS_ROOT}/public/recipies_count_by_countries.xml"

5 xml_string = render_to XE "to" _string(:partial => 'chart_data_generator_for_count_by_country')

6 save_xml_file(filename, xml_string)

7 @recipes_count_by_categories = CategoryAssignment.find(:all, :select => 'category_id, count(*) as counter', :group => 'category_id')

8 filename = "#{RAILS_ROOT}/public/recipes_count_by_categories.xml"

9 xml_string = render_to XE "to" _string(:partial => 'chart_data_generator_for_count_by_category')

10 save_xml_file(filename, xml_string)

11 end

12 def save_xml_file(filename, data)

13 FileUtils.rm(filename, :force XE "force" => true)

14 f = File.new(filename, 'w')

15 f.write(data)

16 f.close

17 end

Again, statements marked with bold italics represent the modifications to XE "to" the previous code. As you can see, these new lines just implement the same functionality as before, but using a different collection XE "collection" as input, this time we are using @recpes_count_by_categories.

Next, as we did for the previous chart, we define an XML XE "XML" builder as shown below:

recipes/_chart_data_generator_for_count_by_categories.builder -----
1 xml.instruct!

2 xml.chart :caption => 'Recipies Count by Category' do

3 @recipes_count_by_categories.each do |category_assignment|

4 xml.set(:label XE "label" => category_assignment.category.name XE "name" , :value => 5 category_assignment['counter'])

5 end

6 end

You can tell that the only significant difference (appart from the caption description), is XE "is" the way we invoke the model description, this is different in boh cases because the queries were different.

After adding this, we’ll be generating both XML XE "XML" data files, each time a request to XE "to" Recipes#index arrives.

2. Configure the Flash Component to XE "to" retrieve the generated data

The only thing missing now to XE "to" render this second chart is XE "is" to add a placeholder for the flash and invoke the proper Javascript to do the job for us. Below we show the last peace of the puzzle:

[image: image195.jpg]File Edit Search View Tools Options Language Buffers Help

Lindex.cryml |2 recipes_controler.rb | 3 _chart_data_generstor_for_count_by _category buider

<index-page >
<collection: replace>
<div>
<table-plus fields="this, categories.count, categories, country'/>
</div>
</collection:>
<after-content:>
<div id="recipes_count_by_countries'
</div>
<div
</div>
<script>
var chart_recipes_by_countries = new FusionCharts('http: //localhost: 3000/FusionCharts/Bar2D. swF, 'Recipes_Countries_Chart', '1000, '400%;
chart_recipes_by_countries.setDataURL(http: //localhost: 3000/recipes_count_by_countries. sml);
chart_recipes_by_countries. render('recipes_count_by_countries');
var chart_recipes_by_categories = new FusionCharts('http://localhost: 3000/FusionCharts/PieD.swf, 'Recipes_Categories_Chart!, '1000', '400°);
chart_recipes_by_categories.setDataURL(http: //localhost: 3000/recipes_count_by_categories.xml);
chart_recipes_by_categories.render(recipes_count_by_categories’);
</script>
</after-content:>
21 <findex-page>

='recipes_count_by_categories'>

BEENEhEEREScovonsunn

Figure 201: recipe/index.rml to XE "to" render a FusionCharts XE "FusionCharts" pie chart XE "pie chart" and bar chart XE "bar chart"
And then, we’re done!! Here is XE "is" the final result:

[image: image196.jpg]FusionCharts Evaluation - An InfoSoft Global Creation

Racipies Count by Country.

Amarican

Urugusy

Masica

taly

France

10

FusionCharts Evaluation - An InfoSoft Global Creation

Racipies Count by Category

~sueat, 3
Hot, 8

salty, 3

spiey, 3

Figure 202: Screen shot of the rendered FusionCharts XE "FusionCharts" bar and pie chart XE "pie chart" s

Have fun with FusionCharts XE "FusionCharts" !! And explore the different options XE "options" here:

http://www.fusioncharts.com/OnlineDocs.asp
Tutorial 20 – Adding User Comments XE "User Comments" to XE "to" Models

By Tiago Franco

Almost every application on the web allows users to XE "to" post comments and provide feedback to almost every item (books, blog posts, other users, etc). This recipe will show you how to support user comments on Hobo XE "Hobo" .

Sometimes we want users to XE "to" post comments to more than one table XE "post comments to more than one table" object. For example, suppose that we are developing a social network where users can enroll in basketball games and search XE "search" for courts to play. We also want to allow users to post comments to games (e.g., users that didn’t win sometimes like to blame the referee) or provide feedback about the court (e.g., if it was suitable or not). In this recipe we will be adding comments to both games and courts. Because we are focused on the comments, we will ignore the attributes XE "attributes" of games and courts.

First, create an Hobo XE "Hobo" application named “comments-recipe”:

> hobo comments-recipe
Now, edit the file application.dryml XE "application.dryml" (app\views\taglibs XE "taglibs") and change the app-name to XE "to" “comments’ recipe”. We need to add an apostrophe to correct the spelling error, as shown below:
[image: image197.png]5 <def tag="app-neme">Comments' Recipe</def>
10

Figure 203: Editing the application name XE "name" for the Comments Recipe
We will now add a model class to XE "to" support the management of basketball games. This can be done with the following command:

> ruby script/generate hobo_model XE "hobo_model" _resource XE "hobo_model_resource" game
Don’t forget to XE "to" generate and run the migration XE "migration" . This can be done with:

> ruby script/generate hobo_migration XE "hobo_migration"

 XE "migration" --migrate XE "--migrate" --default-name XE "--default-name" create_games

> rake XE "rake" db:migrate XE "rake db:migrate"
Let’s run the application to XE "to" perform a sanity check. We expect to see an image similar to Figure 2. Notice the games entry on the menu. If it is XE "is" there, it means that the games controller is working fine.

[image: image198.png]admin@example com Logged in as Tiago Franco Account Log out

Comments’ Recipe

Welcome to Comments’ Recipe

Congratulations! Your Hobo Rails App is up and running
« To customise this page: edit spp/views/frontfindex. dryml

Figure 204: Home page for the Comments Recipe
To add comments support to XE "to" the application, we need follow similar steps. First, we need to create the model with:

> ruby script/generate hobo_model XE "hobo_model" _resource XE "hobo_model_resource" comment
We will add the body XE "body" attribute XE "attribute" to XE "to" hold the text of the user’s comment. Edit the file comment.rb (app/models) and add the line number 6 as shown by the following figure:

[image: image199.png]1
12
13

fields do
boay theml,
timestamps

end

belongs_to :user,
belongs_to :gene,

srequired,

rinary_content

tcreator => true

taccessible

true

=> true

Additionally, add line 10 and 11 from the same figure. Line 10 is XE "is" used to XE "to" keep track of the user that created the comment, while line 11 records the game that is being commented.

Some applications allow users to XE "to" edit or delete their comments. But they never let a user change comments made by someone else. So we need to update XE "update" the permissions of our comment model. Just edit the comment.rb (app/model) and make sure the permissions are like the ones shown on the figure below:

[image: image200.png]det create_permitted?
acting_user.signed up? <& user
end

acting_user

def update_permitted?

acting_user.administrator? || (acting user == user £&
ena
des destroy permitted?

acting_user.administracor? || acting user == user

end

def view_permittea? (attribute)
true
end

tuser_changed?|

Now, we only want users to XE "to" create, edit or browse comments if a game is XE "is" being shown (i.e. in game/show view). So we need to update XE "update" line 5 of comments_controller.rb (app/controllers) from:

auto_actions XE "auto_actions"

 XE "actions" :all
To:

auto_actions XE "auto_actions"

 XE "actions" :destroy

The result is XE "is" shown on the figure below:

[image: image201.png]class CommentsController < ApplicationController
hobo_model_controller
auto_actions :destroy

e, [:create]

auto_actions_for

end

Line 7 also needs to XE "to" be added, to allow comments to be created from the game/show view. Without this line the user won’t be able to comment a game when it is XE "is" being displayed. Add the line to app/controllers/comments_controller.rb.
We now need to XE "to" deal with the game/comment relation on the other end. Edit the file app/models/game.rb (and add line 10):

[image: image202.png]fields do

timestamps
end
has_many :coments,

sdependent =>

We’re just two steps away from testing our new feature: create and run the migration XE "migration" .

But we already know how to XE "to" do that. We need to execute the following commands in the command line:

> ruby script\generate hobo_migration XE "hobo_migration"

 XE "migration" --migrate XE "--migrate" --default-name XE "--default-name" create_comments

> rake XE "rake" db:migrate XE "rake db:migrate"
And we should be ready for a test drive. Create XE "Create" a user account XE "account" (if you haven’t already done it), create a game and add two comments. The result should be something similar to XE "to" :

[image: image203.png]admin@example.com v

Comments’ Recipe

Home Games

Game 1 Edit Game

Comments

Hurray! | can comment this game!

Tisgo Franco

Ups, Ive done it sgain.
Tisgo Franco

Add a Comment.

Body T'm posting another comment :]

Easy isn’t it? So let’s not waste time and start working on the courts!

Let’s create a model to XE "to" store the courts on our database.

> ruby script/generate hobo_model XE "hobo_model" _resource XE "hobo_model_resource" court
Because we are not interested in the details of the courts, let’s just create and run the migration XE "migration" :

> ruby script\generate hobo_migration XE "hobo_migration"

 XE "migration" --migrate XE "--migrate" --default-name XE "--default-name" create_courts

> rake XE "rake" db:migrate XE "rake db:migrate"
Et voila! As we can see in the figure below the application can now store courts.

[image: image204.png]acmin@example.com ¥

Comments’ Recipe

Courts |f Games

Welcome to Comments’ Recipe

Congratulations! Your Hobo Rails App is up and running
 To customise this page: edit spp/views/frontindex. dryml

Figure 210: Comments' Recipe with support for courts
Now we need to XE "to" update XE "update" the existing infrastructure to allow users to comment the courts. Since we already have a comment model, let’s just make a few updates so that it can also be related with a court.

First, we need to XE "to" update XE "update" the existing comment model. Add the contents of line 12 on figure below to the file comment.rb (in app/models). This will allow a comment to be related with a court.

[image: image205.png]belongs_to
belongs_to
belongs_to

never_show

sgame,
tcoure,

game,

tcreator => true
coessible => true

accessible => true

Figure 211: Adding courts to XE "to" comments
Then update XE "update" the court model, file court.rb (in app/models), to XE "to" deal with the other end of the one-to-many relationship. Update XE "Update" the file with the contents of line 10:

[image: image206.png]has_many :coments,

#

Permissions -

sdependent

>

tdestray

We now need to XE "to" update XE "update" the comments_controller to allow the creation of comments in the court/show page. Add line 8 as seen in the figure below to the file comments_controller.rb (in app/controllers).

[image: image207.png]class CommentsController < ApplicationController
hobo_model_controller
auto_actions :destroy

auto_actions_for :game, [:create]
auto_actions_for :court, [:creace]

end

Figure 213: Modifying auto_actions XE "auto_actions"

 XE "actions" for the comments_controlller (allow court)

Finally, create and run the migrations XE "migrations" using the following commands:

> ruby script/generate hobo_migration XE "hobo_migration"

 XE "migration" --migrate XE "--migrate" --default-name XE "--default-name" add_comments_to XE "to" _courts

> rake XE "rake" db:migrate XE "rake db:migrate"
Now, create a court and insert a new comment. Hmm... it seems that the application is XE "is" asking to XE "to" add a game to the comment. By default Hobo XE "Hobo" auto-generates forms to fill every attribute XE "attribute" on the model. We need to tell the framework not to show the game list-box on the new comment form XE "form" .

This can be performed by adding line 14 below comment.rb (app/models).

[image: image208.png]1z
13
14
15
16

belongs to :court,

never_show :gaue,

4

Permissions -

saccessible => true

Figure 214: Hiding court and game in the comment's form XE "form"
Now you will be able to XE "to" see something like the following:

[image: image209.png]ocmitsexampe.Lom &y

Comments’ Recipe

Home Games Pitches

Pitch 2 Edit Pitch

Comments

The best field in Lisban.
Tisgo Franco

Want to find a great place to play in Lisbony? Pick this ane. e been there several times and it has a great floar. The lockers and showers are very
clean. The staff is nice and helpful and the price is below average. Thumbs up!
Tisgo Franco

Add a Comment.

Body

Figure 215: View of the in-line "Add a Comment" form

In this recipe we have learned how to XE "to" support comments to the application models. The example was performed with games and courts, but can easily be mapped to any Hobo XE "Hobo" based application in the wild.

Tutorial 21 – Replicating the Look and Feel of a Site

By Tom Locke

Introduction

Say we want a new Hobo XE "Hobo" app to XE "to" have the same look-and-feel of an existing site. The really big win is XE "is" if we can have this look and feel happen to our new app almost ‘automatically’. We want to be able to develop at “Hobo speed”, and have the look and feel “just happen”. This is not trivial to set up, but once it is the pay-back in terms of development agility will be more than worth it. That is the topic of this chapter.

We’ll use the example of the standard web design used throughout all agencies within the U.S. Department of Agriculture. The authors have done substantial work with NIFA, The Cooperative State Research, Education, and Extension Service, so we will use their website (www.nifa.usda.gov) as an example:

[image: image210.png]USDA. United states Department of Agrcuture
= National Institute of Food and Agriculture

About Us | Grants | Forms oom Help : Contact Us

ou are here: Home

The National Institute of Food and Agriculture (NIFA) Agriculture and Food
i the formor Cooperative State Research, Education, Research Initiative
‘and Extonsion Sorvice (CSREES) Small Business Innovation
Research

In the News More ® e

Browse by Subject Request for Application
e NIFA sce our recently reteased and soon to e R

close grant programs Application Information
GRANTS

North Carolina

in human health and A2 Index

Local Extension Office
Jobs & Opportunities
State & National Partners
NIFA Staff Directory

& milion Programs

Program Impacts

CRIS (funded projects)

Visiting NIFA

Budget Information

millin in grant;
initiat

Figure 217: Screen shot of the nifa.usda.gov home page

Note that, for now at least, this recipe will document how to XE "to" create a close approximation to this theme XE "theme" . In particular, we’re going to skip XE "skip" some of the details that cannot be implemented without resorting to images. This is XE "is" just to keep the recipe getting to long and complicated.

This will be as much a guide to XE "to" general web-development best-practice as it will be a lesson in Hobo XE "Hobo" and DRYML XE "DRYML" . The mantra when working with themes in Hobo is XE "is" something already familiar to skilled web developers:

Separate content XE "content" from presentation

The vast majority of common mistakes that are made in styling a web-app come under this heading XE "heading" . If this one idea can be understood and applied, you’re well on the way to XE "to" :

· Having the look-and-feel “just happen” as your site changes and evolves
· Being able to XE "to" change the theme XE "theme" in the future, without having to modify the app
Since CSS XE "CSS" has been widely adopted, most web developers are familiar with this principle. So this is XE "is" probably just a recap, but to XE "to" remind ourselves how this works:

· “Content” describes what is XE "is" on the page, but not what it will look like. In a Hobo XE "Hobo" app content XE "content" comes from tag definitions, page templates and the applications data of course.
“Presentation” describes how the page should look. That is XE "is" , it describes fonts, colors, margins, borders, images and so on. In a Hobo XE "Hobo" app the presentation is handled essentially the same way as with any app, with CSS XE "CSS" stylesheet XE "CSS stylesheet" s XE "stylesheets" and image assets.

Having said that, we need to XE "to" inject a note of pragmatism:

· Humans being visual animals, information can never truly be separated from the way it is XE "is" displayed. The line is sometimes blurred and there are often judgment calls to XE "to" be made.
· The technologies we’ve got to XE "to" work with, in particular cross-browser support for CSS XE "CSS" , are far from perfect. Sometimes we have to compromise.
There’s probably an entire PhD thesis lurking in that first point, but let’s move on!

The current site

We’ll start with a look at the elements of the existing site that we’ll need to XE "to" replicate. The main ones are:

A banner image:

 [image: image211.png]USDA unios saas bopariment ot agicatre
mm National Institute of Food and Agriculture

A photo image that fits below the banner image:

[image: image212.png]O o il e 2| B N AT ST O e P T

Figure 219: The NIFA photo image

The main navigation bar:

 [image: image213.png]AboutUs ; Grants | Forms | Newsroom : Help : Contact Us

A couple of styles of navigation panels:

 [image: image214.png]Grants Y

© Agriculture and Food
Research Initiative

o Small Business Innovation
Research

o More...

o Request for Application
(RFAS)

o Application Information

And more navigation in the page footer:

 [image: image215.png]NIFA | USDA.gov | Site Map | Policies | Grants.gov | CRIS | REEIS | Leadership Management Dashboard | extension | RSS
FOLA | Accesibility Statamant | Privacy Palicy | Non-Discrimination Statament | Information Quality | USA.gav | White House

-«

One of the important things to XE "to" notice at this stage, is XE "is" that this is not just a “theme XE "theme" ” in the Hobo XE "Hobo" sense of the word. Hobo themes are purely about presentation, whereas the “look and feel” of this site is a mixture of content XE "content" elements and presentation.

That means we’re going to XE "to" be creating three things to capture this look-and-feel

· Tag Definitions

· A CSS XE "CSS" stylesheet XE "CSS stylesheet"
· Some image assets.

The current markup

The existing site makes extensive use of HTML XE "HTML" tables for layout, and the various images in the page are present in the markup as tags. In other words, the existing markup is XE "is" very presentational.

So rather than create tag definitions out of the existing markup, we’ll be recreating the site using clean, semantic markup and CSS XE "CSS" .

The other advantage of re-creating the markup is XE "is" that it will be easier to XE "to" follow Hobo XE "Hobo" conventions. There’s no particular need to do this, but it makes it a great deal easier to jump from one Hobo app to the next.

Building the new app

Let’s do this properly and actually follow along in a blank Hobo XE "Hobo" app. At the end of the recipe we’ll see how we could package this look-and-feel up and re-use it another app. To follow along, you should use Firefox and the Firebug extension you can find at http://getfirebug.com.

[image: image216.png]Firebug - Web Development Evolved

http:/ /getfirebug.com/

ireb
FI re ug web development evolved

Inspect | hi.siteTitle < div.contentinner < div.contentinner3 < div.contentinner2 < di [(=]
Console | HTML | CS5 script DOM Wt Optons - ||| style | Layout oM Optons -
< v
Done)

(Click the tabs above to see screenshots of each.)

Firebug integrates with Firefox to put a wealth of
web development tools at your fingertips while
you browse. You can edit, debug, and monitor

INSTALL
FIREBUG 1.4

:(vahoo

> hobo nifa-demo

> cd nifa-demo

> ruby script/generate XE "ruby script/generate" hobo_migration XE "hobo_migration"

 XE "migration"
If you fire up the server, you’ll see the default Hobo XE "Hobo" app of course:

[image: image217.png]Guest ¥

Nifa Demo

Welcome to Nifa Demo

Congratulations! Your Hobo Rails App is up and running
o To customise this page: edit app/views/ front/ index.dryml

There are no user accounts - please provide the details of the site administrator

Name

Email Address

Password

Password Confirmation

Figure 223: The NIFA Demo default home page

First thing to XE "to" do is XE "is" change the heading XE "heading" “Nifa” to “NIFA” in \views\taglibs XE "taglibs" \applicationl.dryml since it is an acronym for the National Institute of Food and Agriculture:

[image: image218.png]“

1) applcation.deym! @

[<include sro="rapid” plugin="hobo" />

<include sro="taglibs/auto/rapid/cards” />
include sro="taglibs/aute/rapid/pages” />
<include sro="taglibs/auto/rapid/forns” />

oethene nanercteas

\<def tag="app-nane">NIFA Deno</def>

Figure 224: Using the "app-name" tag to XE "to" change the default application name XE "name"
Now we can start to XE "to" make it look like the page we’re after. We’ll take it step by step.

Main background and width

With the Firebug add-on for Firefox I can tell that the NIFA background color is XE "is" #A8ACB7:

[image: image219.png]National Insf

Ble

O ¢

3] Most visied ¥ Getting Started

Edt vew

ute of Food and Agriculture (NIFA) - Mozilla Firefox
istory Booknarks

Tools tielp

Gt | L] hitp:firifa.usda.gov/index. html

7] Home : Nfa emo

Latest Headines

% 11 HTML | cssv
Edt usdastyle.css -
Boay (

background-color: FASACE7;

B

w2

nargin: 0;

padding: 0;

¢

margin-borton: 7px;

nargin-cop:

¢

s

margin-borcon: Spx;

nargin-cop:

7ox;

") National Insitute of Food and Ag.

ML i 5 L A 1

© Search Help

Browse by Audience

Browse by Subject
T
e

pom

J0B AboutUs ;| Grants | Forms | Newsroom : Help i Contact Us

Vou are here: Home.

The National Institute of Food and Agriculture (NIFA)

s the former Cooperative State Resoarch, Education,
‘and Extonsion Sorvice (CSREES)

In the News More ®

NIFA sce our recentiy reteased and soon to
[T

Grants

Agriculture and Food
Research Initiative

Small Business Innovation
Research

More...

Request for Application
(RFAS)

Application Information

off

Figure 225: Using Firebug to locate the background color

Now switching to XE "to" the Hobo NIFA Demo application, Firebug tells me (click the inspect button, then click on the background) that the CSS XE "CSS" rule that sets the current background comes from clean.css and looks like:

[image: image220.png]Home : Nifa Demo - Mozilla Firefox
Ele Edt Vew Hstory Bookmarks Ioos Help

O - % o (D o

- Google

Most visited ¥ Getting Started (3. Latest Headines

1) Home : it Demo

Nifa Demo

Guest v

Welcome to Nifa Demo

Edt cean.css

enl, body {
“hoz-background-clip: border;
-moz-background-inline-policy: contimuious;
moz-backgrownd-origin: padding;

)

page-header {
“noz-background-clip: border;

-moz-background-inline-policy: contimuious;

-noz-background-origin: padding;

background: §3¥06E url(../inages/101-3B5¥87-ACD3E6 png] repeat-x scroll 0 0;
color: white;

Figure 226: Using Firebug to find the images used by Hobo for the default background

Anything we add to XE "to" application.css XE "application.css" (it is XE "is" empty by default) will override clean.css. So I’m going to add this rule to public/stylesheets XE "stylesheets" /application.css:

html, body XE "body" { background: XE "background:" #A8ACB7 }

[image: image221.png]S R TR TEAR TERRERE EEEEE

SR

Project

) nfademo
=
& £ controlers
& (5 hepers
& () modeks
&) views
& £ Front
S layouss
& taglbs
5 ao
& (5 themes
appication.dryml
& £ user_maier
O users
& £ config
w0k
& doc
=13
=
=3 publc
& (£ habathemes
& (5 images
& (5 favascripts
=33 stylsheets

epplcation.css
hobo-rapid.css
reset.css

Figure 227: Adding the new background color to "application.css XE "application.css" "

Again, using Firebug on the NIFA Demo app (by clicking on the <body XE "body" > tag in the HTML XE "HTML" window) I can see that the width is XE "is" set on the body tag:

body XE "body" { ... width: 960px; ... }

Back in NIFA, I can right click the banner image and chose “View Image”, and Firefox tells me its width is XE "is" 766 pixels. So in application.css XE "application.css" I add

body XE "body" { width: 766px; }

Note we’ve not changed XE "changed" any markup yet - that’s how we like it.

Account navigation

These are the log-in XE "log-in" and sign-up XE "sign-up" links in the top right. They are not on the NIFA site, but if the app needed them, the place they are in now would be fine, so we’ll leave them where they are.

Search

The page header XE "header" has a search-field which we don’t want. To get rid of this we’ll customize the <page> tag. We need to XE "to" do this in application.dryml XE "application.dryml" :

[image: image222.png]Ll

) application.dryml 3
T [ctmotute o

rapid” plugin="hobo"/>

include st
<include sro=
include st

‘taglibs/auto/rapid/cards" />
‘taglibs/auto/rapid/pages" />
‘taglibs/auto/rapid/forus"/>

\<set-thene naus

clean”/>

9 |<det tag="app-nane"NTFA Democ/det>
1

11 |# Add this renove the live search

125 cextend tag="page"

135] <old-page nerge without-live-search>
1all </ora-pager

15 U< excena

Figure 228: First pass at modifying "application.dryml XE "application.dryml" "

<extend tag="page">

 <old-page merge without-live-search>

 </old-page>

</extend>

So now we have made a change to XE "to" the markup, but that makes perfect sense, because here we wanted to change what’s on the page not what stuff looks like.

The Banner

Again, using Firefox’s “View Image”, it turns out that the existing banner is XE "is" in fact two images.

This one:

[image: image223.png]USDA unios saas bopariment ot agicatre
mm National Institute of Food and Agriculture

And this one:

[image: image224.jpg]=

il Aete ST

; :‘eJtenshn@

To add these images without changing the markup, we need to XE "to" use CSS XE "CSS" ’s background-image feature. One major limitation of CSS is XE "is" that you can only have one background image per element. That won’t be a problem, but to understand our approach, first take a look at a simplified view of the page markup that we’re working with:

<html>

 <head>...</head>

 <body XE "body" >

 <div class="page-header">

 <h1 class="app-name">NIFA Demo</h1>

 </div>

 ...

 </body XE "body" >

</html>

Notice that this image

[image: image225.png]USDA unios saas bopariment ot agicatre
mm National Institute of Food and Agriculture

Is essentially a graphical version of that <h1> tag, so we’ll use CSS XE "CSS" to XE "to" make that same <h1> be rendered as an image. The existing text will be hidden, by moving it way out of the way with a text-indent rule. First we need to save that image into our public/images folder.

The CSS XE "CSS" to XE "to" add to application.css XE "application.css" is XE "is" :

div.page-header XE "div.page-header" { padding: XE "padding:" 0; }

div.page-header XE "div.page-header" h1.app-name {

 text-indent: XE "text-indent:" -10000px;

 background: XE "background:" url(..\images\banner_nifa.gif) no-repeat;

 padding: XE "padding:" 0; margin: 0;

 height: XE "height:" 62px;

}

[image: image226.png]Fie Edt View Text Navigation Bundles Help

Profect][« 0 applcationess @

) fademo

1 fntml, body (background: HABRCBT)
D 2 boay (wiatn: Teepx;)
) config 5
=L 4 (div.page-header { padding: 0; }
O doc s
=1 6Cjaiv. page-header hl.app-nae {
=1 7 text-indent: -10000px:
=03 public 1 background: wrl{..\inages\banner nifa.gif) no-repeat;
) habothemes . -
= images 7 H0| heioht: cax:
baner rifa.gF frt
vallsprg 13

& javaserbte
= O styleshests

applcation.css
hobo-rapid.css

reset.css

ot Al DI e ot At A o b AN B A AR A A4 o B e

Figure 230: How to reference the banner gif in "application.css XE "application.css" "

OK that was a bit of a leap. Why padding: XE "padding:" 0px for the page-header, for example? The fact of the matter is XE "is" that working with CSS XE "CSS" is all about trial and error. Using Firebug to XE "to" figure out what rules are currently in effect, flipping back and forth between the stylesheet in your editor and the browser. Try experimenting by taking some of those rules out and you’ll see why each is needed.

Now for the photo part of the banner. Again, save it to XE "to" public/images, then add some extra properties to the div.page-header XE "div.page-header" selector, so it ends up like:

div.page-header XE "div.page-header" {

 padding: XE "padding:" 0;

 background: XE "background:" url(..\images\banner_photo.jpg) no-repeat 0px 62px;

 height: XE "height:" 106px;

}

Taking shape now, except the main navigation panel (“Home” tag) is XE "is" hovering on top of the photos:

[image: image227.png]Login Signup

USDA unita states Department of Agricuture
= National Institute of Food and Agriculture

-

educatiofm | extension ""

Welcome to NIFA Demo

Congratulations! Your Hobo Rails App is up and running
© To customise this page: edit app/views/ front/ index.dryml

There are no user accounts - please provide the details of the site administrator

Name

Email Address

Password

Password Confirmation

Figure 231: View of the NIFA Demo login page

Navigation

The existing navigation bar is XE "is" created entirely with images. It’s quite common to XE "to" do this, as it gives total control over fonts, borders, and other visual effects such as color gradients. The downside is that you have to fire up your image editor every time there’s a change to the navigation.

This doesn’t sit very well with our goal to XE "to" be able to make changes quickly and easily. So for this recipe we’re going to go implement the navigation bar without resorting to images. We’ll lose the bevel effect, but some might think the end result is XE "is" actually better - cleaner, clearer and more professional looking.

Our app only has a home page right now, so first let’s define a fake navigation bar to XE "to" work with.

In application.dryml XE "application.dryml" :

<def tag="main-nav">

 <navigation class="main-nav">

 <nav-item href="">Home</nav-item>

 <nav-item href="">About Us</nav-item>

 <nav-item href="">Grants</nav-item>

 <nav-item href="">Forms</nav-item>

 <nav-item href="">Newsroom</nav-item>

 <nav-item href="">Help</nav-item>

 <nav-item href="">Contact Us</nav-item>

 </navigation>

</def>

[image: image228.png]USDA. United states Department of Agricuture
= National Institute of Food and Agriculture

Home € AboutUs
o

Guest

Figure 232: View of our first pass at the main navigation menu

Use Firebug’s “Inspect” button to XE "to" find the navigation bar. You’ll see that it’s rendered as a <ul XE "ul" > list, which is XE "is" generally considered good practice; it is a list of links after all. There’s several things wrong with the appearance of the navigation at this point:

· It’s in the wrong place - we want to XE "to" move it down and to the right.
· Needs to XE "to" be shorter, and the spacing of the items needs fixing
· The font needs to XE "to" be smaller, and not bold
· The background color needs to XE "to" change, as do the colors when you mouse-over a link
Now this is XE "is" not a CSS XE "CSS" tutorial, so we’re not going to XE "to" explain every last detail, but we’ll build it up in a few steps which will help to illustrate what does what. First update XE "update" the rules for div.page-header XE "div.page-header" in application.css XE "application.css" so they look like:

div.page-header XE "div.page-header" {

 padding: XE "padding:" 0;

 background: XE "background:" white url(..\images\banner_photo.jpg) no-repeat 0px 62px;

 height: XE "height:" 138px;

}

And add:

div.page-header XE "div.page-header" .main-nav {

 position: absolute; bottom: 0; right: 0;

}

[image: image229.png]USDA. nited States Department of Ageiculture
= National Institute of Food and Agriculture

I W e 5 ORI 2

Welcome to NIFA Demo

Congratulations! Your Hobo Rails App is up and running
© To customise this page: edit app/views/ front/ index.dryml

There are no user accounts - please provide the details of the site administrator

Name
Email Address odall@harguin.com
Password eeeees

Password Confirmation

Figure 233: Still need more to fix the top navigation menu...

The nav-bar still looks wrong. We’ll now fix the sizing and placement. Update XE "Update" the new rule (div.page-header XE "div.page-header" .main-nav) and add new ones, and colors. The entire application.css XE "application.css" looks like this so far:

html, body XE "body" { background: XE "background:" #A8ACB6 }

body XE "body" { width: 766px; }

div.page-header XE "div.page-header" {

 padding: XE "padding:" 0;

 background: XE "background:" white url(../images/banner_photo.jpg) no-repeat 0px 62px;

 height: XE "height:" 138px;

}

div.page-header XE "div.page-header" h1.app-name {

 text-indent: XE "text-indent:" -10000px;

 background: XE "background:" url(../images/banner_nifa.gif) no-repeat;

 padding: XE "padding:" 0; margin: 0;

 height: XE "height:" 55px;

}

div.page-header XE "div.page-header" .main-nav {

 position: relative;

top: 63px;

 height: XE "height:" 21px;

width: 100%;

line-height: 21px;

padding: XE "padding:" 0;

 text-align: right;

 background: XE "background:" #313367;

}

div.page-header XE "div.page-header" .main-nav li {

 margin: 0;

padding: XE "padding:" 0 0 0 4px;

 display:inline;

float:none;

 border-left: 1px dotted #eee;

background: XE "background:" #313367;

 color: silver;

}

div.page-header XE "div.page-header" .navigation.main-nav li a {

 padding: XE "padding:" 3px 8px;

margin: 0;

 font-weight: normal;

display:inline;

font-size: 12px;

 background: XE "background:" #313367;

 color: silver;

}

div.page-header XE "div.page-header" .navigation.main-nav li.current a {

 background: XE "background:" #313367;

 color: white;

}

div.page-header XE "div.page-header" .navigation.main-nav li a:hover {

 background: XE "background:" #A9BACF;

 color: black;

}

Note that we had to XE "to" make the last two selectors a bit more specific, in order XE "order" to ensure that they take precedence over rules in the “Clean” theme XE "theme" .

The page header XE "header" should be done at this point:

[image: image230.png]Guest ¥

USDA. Unias Sates Department of Agrciure
= National Institute of Food and Agriculture

M Sl e - AR S B

Welcome to NIFA Demo

R ann b A O AN, e i AL A, it e o s i

Figure 234: The fixed NIFA man navigation bar

The sidebars

The existing site has both left and right sidebars. We’ll add those now. The first step is XE "is" to XE "to" add the three content XE "content" sections to the <page> tag in application.dryml XE "application.dryml" . We’ve already extended <page>, so modify the DRYML XE "DRYML" you already have to look like:

<extend tag="page">

 <old-page merge without-live-search>

 <content XE "content" : replace>

 <section-group class="page-content">

 <aside param XE "param" ="aside1"/>

 <section param XE "param" ="content XE "content" "/>

 <aside param XE "param" ="aside2"/>

 </section-group>

 </content XE "content" :>

 </old-page>

</extend>

We’ve replaced the existing <content XE "content" :> with a <section-group> that contains our two <aside> tags and the main <section>.

To try this out, we’ll insert some dummy content XE "content" in app/views/front/index.dryml XE "index.dryml" . Edit that file as follows:

<page title="Home">

 <body XE "body" : class="front-page"/>

 <aside1:>Aside 1</aside1:>

 <content XE "content" :>Main content</content:>

 <aside2:>Aside 2</aside2:>

</page>

You should see something like:

[image: image231.png]Guest v

USDA. Unias Sates Department of Agrciure
= National Institute of Food and Agriculture

M e % MRS B

Main content
Aside 1 Aside 2

Figure 235: View of the default three-column formatting
Obviously we’ve got a bunch of styling to XE "to" do. First though, let’s add the content XE "content" for the left sidebar. This is XE "is" the “search XE "search" and browse” panel, which is on every page of the site, so let’s define it as a tag in application.dryml XE "application.dryml" :

<def tag="search-and-browse" attrs XE "attrs" ="current-subject">

 <div class="search-and-browse">

 <div param XE "param" ="search XE "search" ">

 <h3>Search NIFA</h3>

 <form XE "form" action XE "action" ="">

 <input type="text" class="search-field"/>

 <submit XE "submit" label XE "label" ="Go"/>

 </form XE "form" >

 <p class="help">Search Help</p>

 </div>

 <div param XE "param" ="browse-by-audience">

 <h3>Browse by Audience</h3>

 <select-menu first-option="Information for..." options XE "options" ="&[]"/>

 </div>

 <div param XE "param" ="browse-by-subject">

 <h3>Browse by Subject</h3>

 <navigation current="¤t_subject">

 <nav-item href="/">Agricultural & Food Biosecurity</nav-item>

 <nav-item href="/">Agricultural Systems</nav-item>

 <nav-item href="/">Animals & Animal Products</nav-item>

 <nav-item href="/">Biotechnology & Geneomics</nav-item>

 <nav-item href="/">Economy & Commerce</nav-item>

 <nav-item href="/">Education</nav-item>

 <nav-item href="/">Families, Youth & Communities</nav-item>

 </navigation>

 </div>

 </div>

</def>

A few points to XE "to" note about that markup:

· We’ve tried to XE "to" make the markup as “semantic” as possible – it describes what the content XE "content" is XE "is" , not what it looks like.
· We’ve added a few params XE "params" , so that individual pages can customize the search-and-browse panel. Each param XE "param" also gives us a CSS XE "CSS" class of the same name XE "name" , so we can target those in our stylesheet.
· We’ve used <navigation> for the browse-by-subject links. This gives us the ability to XE "to" highlight the current page as the user browses.
Because the search-and-browse panel appears on every page, lets call it from our master page tag (<extend tag="page">). Change:

<aside param XE "param" ="aside1"/>

To:

<aside param XE "param" ="aside1"><search-and-browse/></aside>

Then remove the <aside1:>Aside 1</aside1:> parameter from front/index.dryml XE "index.dryml" .

[image: image232.png]USDA. United states Departmont of Agricuture
= National Institute of Food and Agriculture

M Sl e - AR S B

Main content

Search CSREES Aside 2

Search Help

Browse by Audience
Information for... ¥

Browse by Subject
Agricultural & Food Biosecurity
Agricultural Systems

Animals & Animal Products
Biotechnology & Geneomics
Economy & Commerce
Education

Families, Youth & Communities

Figure 236: View of the left panel contact without styling

Now we need to XE "to" style this panel. After a good deal of experimentation, we get to the following CSS XE "CSS" :

div.page-content, div.page-content .aside { background: XE "background:" white; }

.aside1 { width: 173px; padding: XE "padding:" 10px;}

.search-and-browse {

 background: XE "background:" #A9BACF;

 border: 1px solid #313367;

 font-size: 11px;

 margin: 4px;

}

.search-and-browse h3 {

 background: XE "background:" #313367; color: white;

 margin: 0; padding: XE "padding:" 3px 5px;

 font-weight: normal; font-size: 13px;

}

.search-and-browse a { background: XE "background:" none; color: #000483;}

.search-and-browse .navigation { list-style-type: circle; }

.search-and-browse .navigation li { padding: XE "padding:" 3px 0; font-size: 11px; line-height: 14px;}

.search-and-browse .navigation li a { border:none;}

.search-and-browse .search XE "search" form XE "form" { margin: 0 3px 3px 3px;}

.search-and-browse .search XE "search" p { margin: 3px;}

.search-and-browse .search-field { width: 120px;}

.search-and-browse .submit-button { padding: XE "padding:" 2px;}

.search-and-browse .browse-by-audience select { margin: 5px 3px; width: 92%;}

With that added to XE "to" application.css XE "application.css" you should see:

[image: image233.png]USDA. United states Departmont of Agricuture
= National Institute of Food and Agriculture

R s % SR e

‘Main content

Aside 2

© dgricultural & Food
Biosecurity

dgricultural Systems
Animals & Animal Praducts

Biotechnology & Geneomics

o o

Economy & Commerce

Education

o Families, Youth
Communities

Figure 237: View of the left panel content XE "content" with correct styling

OK - let’s switch to XE "to" the right-hand sidebar.

If you click around the site you’ll see the right sidebar is XE "is" always used for navigation panels, like this one:

[image: image234]
You’ll also notice it’s missing from some pages, which is XE "is" as easy as:

<page without-aside2/>

It seems like a good idea to XE "to" define a tag that creates one of these panels, say:

<nav-panel>

 <heading XE "heading" :>Quick Links</heading:>

 <items:>

 <nav-item href="/">A-Z Index</nav-item>

 <nav-item href="/">Local Extension Office</nav-item>

 <nav-item href="/">Jobs and Opportunities</nav-item>

 </items:>

</nav-panel>

We’ve re-used the <nav-item> tag as it gives us an and an <a> which is XE "is" just what we need here.

Now add the definition of <nav-panel> to XE "to" your application.dryml XE "application.dryml" :

<def tag="nav-panel">

 <div class="nav-panel" param XE "param" ="default">

 <h3 param XE "param" ="heading XE "heading" "></h3>

 <div param XE "param" ="body XE "body" ">

 <ul XE "ul" param XE "param" ="items"/>

 </div>

 </div>

</def>

Notice that we defined two parameters for the body XE "body" of the panel. Callers can either provide the <items:> parameter, in which case the <ul XE "ul" > wrapper is XE "is" provided, or, in the situation where the body will not be a single , they can provide the <body:> parameter.

OK let’s throw one of these things into our page. Here’s what front/index.dryml XE "index.dryml" needs to XE "to" look like:

<page title="Home">

 <body XE "body" : class="front-page"/>

 <content XE "content" :>Main content</content:>

 <aside2:>

 <nav-panel>

 <heading XE "heading" :>Grants</heading:>

 <items:>

 <nav-item href="/">National Research Initiative</nav-item>

 <nav-item href="/">Small Business Innovation Research</nav-item>

 <nav-item href="/">More...</nav-item>

 </items:>

 </nav-panel>

 <nav-panel>

 <heading XE "heading" :>Quick Links</heading:>

 <items:>

 <nav-item href="/">A-Z Index</nav-item>

 <nav-item href="/">Local Extension Office</nav-item>

 <nav-item href="/">Jobs and Opportunities</nav-item>

 </items:>

 </nav-panel>

 </aside2:>

</page>

And here’s the associated CSS XE "CSS" – add this to XE "to" the end of your application.css XE "application.css" :

.aside2 { margin: 0; padding: XE "padding:" 12px 10px; width: 182px;}

.nav-panel {border: 1px solid #C9C9C9; margin-bottom: 10px;}

.nav-panel h3 {background: XE "background:" #A9BACF; color: #313131; font-size: 13px; padding: XE "padding:" 3px 8px; margin: 0;}

.nav-panel .body XE "body" {background: XE "background:" #DAE4ED; color: #00059A; padding: XE "padding:" 5px;}

.nav-panel .body XE "body" a {color: #00059A; background: XE "background:" none;}

.nav-panel ul XE "ul" {list-style-type: circle;}

.nav-panel ul XE "ul" li { margin: 5px 0 5px 20px;}

[image: image235.png]USDA. United states Departmont of Agricuture
= National Institute of Food and Agriculture

R s % SR e

‘Main content
Grants

© National Research Initiative

© small Business Innovation

Research
o Wore.
Quick Links
© dgricultural & Food
Biosecurity © A-Z Index
© Hericultural Systems © Local Extension Office

Animals & Animal Praducts TS
Biotechnology & Geneomics

© Economy & Commerce.

o Education

o Families, Youth
Communities

A R — A s A

Figure 238: View of the right panel content XE "content" with ßstyling
Main content XE "content"
The main content XE "content" varies a lot from page to XE "to" page, so let’s just make sure that the margins are OK, and leave it at that. First we need some content to work with, so in front/index.dryml XE "index.dryml" , replace:

<content XE "content" :>Main content</content:>

With:

<content XE "content" :>

 <h2>National Institute of Food and Agriculture</h2>

 <p>Main content XE "content" goes here...</p>

</content XE "content" :>

On refreshing the browser it seems there’s nothing else to XE "to" do. This looks fine:

[image: image236.png]USDA. Unias Sates Department of Agrciure
= National Institute of Food and Agriculture

© dgricultural & Food
Biosecurity

o dericultural Systems

© Animals & Animal Praducts

atachnaloey & G~

National Institute of Food and Agriculture

sain content goes here.

e 248 b S et + e AT At st

Grants

© National Research Initiative

© small Business Innovation
Research

o Wore.

Quick Links

© A-Z Index
© Local Extension Office

© Jabs and Opportunities
A s

s,

Figure 239: View of the main content XE "content" panel

The footer

The footer is XE "is" the same throughout the site. Let’s define it as a tag and add it to XE "to" our main <page> tag. Here’s the definition for application.dryml XE "application.dryml" :

<def tag="footer-nav">

 <ul XE "ul" >

<nav-item href="/">NIFA</nav-item>

<nav-item href="/">USDA.gov</nav-item>

<nav-item href="/">Site Map</nav-item>

<nav-item href="/">Policies and Links</nav-item>

<nav-item href="/">Grants.gov</nav-item>

<nav-item href="/">CRIS</nav-item>

<nav-item href="/">REEIS</nav-item>

<nav-item href="/">Leadership Management Dashboard</nav-item>

<nav-item href="/">eXension</nav-item>

<nav-item href="/">RSS</nav-item>

 </ul XE "ul" >

/def>

And add this parameter to XE "to" the <extend tag="page">:

<footer: param XE "param" ><footer-nav/></footer:>

Note: Since Hobo already includes a page-footer div out-of-the-box, we don’t need to create this div in DRYML XE "DRYML" . If we did, we would end up with a duplicate and this would distort the footer.

And finally, the CSS XE "CSS" . To get the corner graphic that we’ve used here, you need to XE "to" right-click and “Save Image As” on the bottom left corner in the existing site:

.page-footer {

 background: XE "background:" white url(../images/footer_corner_left.gif) no-repeat bottom left;

 overflow: hidden; height: XE "height:" 100%;

 border-top: 1px solid #B8B8B8;

 font-size: 12px; line-height: 10px;

 padding: XE "padding:" 5px 0px 10px 40px;

}

.page-footer ul XE "ul" { list-style-type: none; }

.page-footer ul XE "ul" li { float: left; border-right: 1px solid #2A049A; margin: 0; padding: XE "padding:" 0 5px;}

.page-footer ul XE "ul" li a {border:none; color: #2A049A;}
There’s one CSS XE "CSS" trick in there that is XE "is" work a mention. In the .page-footer section, we’ve specified:

overflow: hidden; height: XE "height:" 100%;

This is XE "is" the famous “self clearing” trick. Because all the content XE "content" in the footer is floated, without this trick the footer looses its height.

[image: image237.png][EEET | Login Signup

USDA united states Department of Agriculure
== National Institute of Food and Agriculture

extension

National Institute of Food and Agriculture Grants

Main cantent goes here... © National Research Initiative

© Small Business Innovation
Research

© Mare...

Quick Links
o Agricultural & Food

Binsecurity © A-Z Index

Agricultural Systems © Local Extension Office

A ls & A | Product:
nimals & Animal Products © Jabs and Opportunities

Biotechnalogy & Geneomics

Economy & Commerce

Education

Families, Youth &
Communities

NIFA | USDA.gov | Site Map | Policies | Grants.gov | CRIS | REEIS | Leadership Management Dashboard | eXension | RSS |

Figure 240: NIFA Demo with final footer styling

That pretty much brings us to XE "to" the end of the work of reproducing the look and feel. We should now be able to build out our application, and it will look right “automatically”. In practice you always run into small problems here and there and need to dive back into CSS XE "CSS" to tweak things, but the bulk of the job is XE "is" done.

The next question is XE "is" - how could we make several apps look like this without repeating all this code?

Creating a “look and feel” plugin

To re-use this work across many apps, we’ll use the standard Rails technique - create a plugin.

The plugin will contain:

· A DRYML XE "DRYML" taglib with all of our tag definitions
· A public directory, containing our images and stylesheets XE "stylesheets"
Somehow the idea of “creating a plugin” seems like a big deal, but it’s there’s really nothing to XE "to" it. Pretty much all we’re going to do is XE "is" move a few files into different places.

Here is XE "is" the content XE "content" of a batch file to XE "to" create the folders and move the files:

[image: image238.png][create_pluginbat @3

2EERER

1
12

B

vendor\plugins\nifa
4 vendor\plugins\nifa

taglibs

public

publicinifa

publicinifaystyleshests

publicinifayinages

TR

lcopy appiviens)taglibs\application. drynl vendor'\plugins\nifa) taglibsinifa. drynl

copy publicystyleshests\application.css vendor\pluginsimifa\publicinifa)styleshestsinifa. oos
(copy publichinages\® vendor\plugins\mifa\publicinifayinages

Figure 241: Batch file with commands to create the plugin folders and content XE "content"
Or, as individual commands:

> md vendor\plugins\nifa

> cd vendor\plugins\nifa

> md taglibs XE "taglibs"
> md public

> md public\nifa

> md public\nifa\stylesheets XE "stylesheets"
> md public\nifa\images

> cd ..\..\..

> copy app\views\taglibs XE "taglibs" \application.dryml XE "application.dryml" vendor\plugins\nifa\taglibs\nifa.dryml

> copy public\stylesheets XE "stylesheets" \application.css XE "application.css" vendor\plugins\nifa\public\stylesheets\nifa.css

> copy public\images* vendor\plugins\nifa\public\nifa\images

(That last command will also copy rails.png into the plugin, which you probably want to XE "to" delete).

We’ve copied the whole of application.dryml XE "application.dryml" into our plugin, because nearly everything in there belongs in the plugin, but it does need some editing:

· At the top, remove all of the includes, the <set-theme> and the definition of <app-name>

· We need to XE "to" make sure our stylesheet gets included, so add the following parameter to the call to <old-page>:
<append-stylesheets:>

 <stylesheet name XE "name" ="\nifa\stylesheets XE "stylesheets" \nifa.css"/>

 </append-stylesheets:>
The new nifa.dryml will be:

nifa.drynl

<append-stylesheets:>

 <stylesheet name XE "name" ="\nifa\stylesheets XE "stylesheets" \nifa.css"/>

 </append-stylesheets:>

Add this remove the live search XE "search" and add sidebars

<extend tag="page">

 <old-page merge without-live-search>

 # need this to XE "to" acces the nifa.css stylesheet

 <append-stylesheets:>

 <stylesheet name XE "name" ="\nifa\stylesheets XE "stylesheets" \nifa.css"/>

 </append-stylesheets:>

 #

 <content XE "content" : replace>

 <section-group class="page-content">

 <aside param XE "param" ="aside1"><search-and-browse/></aside>

 <section param XE "param" ="content XE "content" "/>

 <aside param XE "param" ="aside2"/>

 </section-group>

 </content XE "content" :>

 <footer: param XE "param" ><footer-nav/></footer:>

 </old-page>

</extend>

Replace the default navigation bar

<def tag="main-nav">

 <navigation class="main-nav">

 <nav-item href="">Home</nav-item>

 <nav-item href="">About Us</nav-item>

 <nav-item href="">Grants</nav-item>

 <nav-item href="">Forms</nav-item>

 <nav-item href="">Newsroom</nav-item>

 <nav-item href="">Help</nav-item>

 <nav-item href="">Contact Us</nav-item>

 </navigation>

</def>

new tag

<def tag="search-and-browse" attrs XE "attrs" ="current-subject">

 <div class="search-and-browse">

 <div param XE "param" ="search XE "search" ">

 <h3>Search CSREES</h3>

 <form XE "form" action XE "action" ="">

 <input type="text" class="search-field"/>

 <submit XE "submit" label XE "label" ="Go"/>

 </form XE "form" >

 <p class="help">Search Help</p>

 </div>

 <div param XE "param" ="browse-by-audience">

 <h3>Browse by Audience</h3>

 <select-menu first-option="Information for..." options XE "options" ="&[]"/>

 </div>

 <div param XE "param" ="browse-by-subject">

 <h3>Browse by Subject</h3>

 <navigation current="¤t_subject">

 <nav-item href="/">Agricultural & Food Biosecurity</nav-item>

 <nav-item href="/">Agricultural Systems</nav-item>

 <nav-item href="/">Animals & Animal Products</nav-item>

 <nav-item href="/">Biotechnology & Geneomics</nav-item>

 <nav-item href="/">Economy & Commerce</nav-item>

 <nav-item href="/">Education</nav-item>

 <nav-item href="/">Families, Youth & Communities</nav-item>

 </navigation>

 </div>

 </div>

</def>

Parameterized panel

<def tag="nav-panel">

 <div class="nav-panel" param XE "param" ="default">

 <h3 param XE "param" ="heading XE "heading" "></h3>

 <div param XE "param" ="body XE "body" ">

 <ul XE "ul" param XE "param" ="items"/>

 </div>

 </div>

</def>

Footer parameterized tag

<def tag="footer-nav">

 <ul XE "ul" >

 <nav-item href="/">NIFA</nav-item>

<nav-item href="/">USDA.gov</nav-item>

<nav-item href="/">Site Map</nav-item>

<nav-item href="/">Policies</nav-item>

<nav-item href="/">Grants.gov</nav-item>

<nav-item href="/">CRIS</nav-item>

<nav-item href="/">REEIS</nav-item>

<nav-item href="/">Leadership Management Dashboard</nav-item>

<nav-item href="/">eXension</nav-item>

<nav-item href="/">RSS</nav-item>

 </ul XE "ul" >

</def>

Using the plugin

To try out the plugin, create a new blank Hobo XE "Hobo" app. There are then three steps to XE "to" install and setup the plugin:

Step 1: Copy vendor\plugins\nifa from nifa-demo into vendor\plugins in the new app.

Step 2: To install the taglib add

<include XE "include" src="nifa" plugin="nifa"/>

to XE "to" application.dryml XE "application.dryml" . It must be added after the <set-theme> tag.

Step 3: To install the public assets:

> copy vendor\plugins\nifa\public* public

That should be it. Your new app will now look like the NIFA website, and the tags we defined, such as <nav-panel> will be available in every template.

Tutorial 22 – Using Hobo Lifecycles XE "Hobo Lifecycles"

 XE "Lifecycles" for Workflow XE "Lifecycles for Workflow"
By Venka Ashtakala

Now that we have our Four Table application working the way we want, let’s add an approval process so that new recipes need to XE "to" be approved by a user before they are published to the web.

To do this we can take advantage of ‘Hobo Lifecycles XE "Hobo Lifecycles"

 XE "Lifecycles" ’ which is XE "is" the Hobo answer to XE "to" creating a workflow. The workflow that we will define for this application is that a Recipe can exist in one of 2 states: “Not Published” and “Published” and that there will be two transitions XE "transitions" : “Publish” and “Not Publish” which will move the Recipe from one state XE "state" to the other.

The “Publish” transaction will move the Recipe from the “Not Published” to XE "to" “Published” state XE "state" , while the “Not Publish” transaction will do the opposite. Lastly we’ll make controller and view changes as necessary.

Tutorial Application: Four Tables

Topic: HOBO Lifecycles XE "Lifecycles"
Steps

1) Setup the lifecycle: Now that we know the functional requirements for the Recipe workflow we wish to XE "to" implement we can start modifying our Four Table application. We are going to add the Hobo Lifecycle definition to our Recipe model. Let’s open up the /app/model/recipe.rb file and add the lifecycle do..end block:

[…]

belongs_to XE "belongs_to" :country
lifecycle :state XE "state" _field => :lifecycle_state do
state XE "state" :not_ XE "not_" published, :default => :true
state XE "state" :published
transition XE "transition" :publish, { :not_ XE "not_" published => :published }, :available_to XE "to" => "acting_user XE "acting_user" if acting_user.signed_up? XE "acting_user.signed_up?" "
transition XE "transition" :not_ XE "not_" publish, { :published => :not_published }, :available_to XE "to" => "acting_user XE "acting_user" if acting_user.signed_up? XE "acting_user.signed_up?" "
end
--- Permissions XE "Permissions" ---

[…]

So what did we add exactly? The lifecycle do..end block defines the lifecycle for a given model. The :state XE "state" _field argument specifies that we want the lifecycle to XE "to" save the current state to a ‘lifecycle_state’ column in the table. Within the block we have to define our states and transition XE "transition" actions XE "transition actions"

 XE "actions" .

We define our states by using the ‘state XE "state" ’ keyword, which takes the state name XE "name" and options XE "options" as arguments. So in this manner we have defined two states:

 :not_ XE "not_" published
 :published

The :default => :true argument to XE "to" the :not_ XE "not_" published state XE "state" , means that when the state is XE "is" not defined, such as when the recipe is created, its initial state will be :not_published.

After the state XE "state" declarations, we have defined two transition XE "transition" actions XE "transition actions"

 XE "actions" using the ‘transition’ keyword. The transition keyword requires a name XE "name" , a hash that specifies the state transition and then options XE "options" . The first transition, :publish, specifies that when this action XE "action" is XE "is" executed, the Recipe’s state will go from :not_ XE "not_" published to XE "to" :published. The :available_to argument specifies that this action can only be executed by a user that has signed up, so guests are not allowed to execute this action. The second transition, :not_publish, changes the state from :published to :not_published, and limits the action to be available only to signed up users.

By adding the lifecycle behaviour to XE "to" our model, we’ll need to generate and run a hobo migration XE "migration" since a new ‘lifecycle_state XE "state" ’ column will be added to our recipes table. At the command line, in your application directory, execute the following:

> script/generate hobo_migration XE "hobo_migration"

 XE "migration"
Select ‘m’ when prompted to XE "to" migrate now, and then specify a name XE "name" for this migration XE "migration" .

2) Setup the lifecycle controls XE "controls" in your view: Now that we have setup the lifecycle for our Recipe model, we need to XE "to" expose the transition XE "transition" actions XE "transition actions"

 XE "actions" to our users. HOBO makes this very easy by giving us a predefined dryml tag called <transition-buttons/> and we’ll use this tag on our Recipe listing page.

Open up the views/recipes/index.dryml XE "index.dryml" page and change this code:

<table-plus fields="this, categories.count, categories,country"/>
to XE "to" :

<table-plus fields="this, categories.count, categories, country">

 <controls XE "controls" :>

 <transition-buttons/>

 </controls XE "controls" :>
</table-plus>
By using the <controls XE "controls" :> parameter tag XE "parameter tag" in table-plus, it allows us to XE "to" insert an extra column at the end of the table where we can place action XE "action" buttons or links. There we use the <transition-buttons/> tag to specify that lifecycle transition XE "transition" buttons should show for any actions XE "actions" that are available for the current user.

3) Setup the lifecycle actions XE "lifecycle actions"

 XE "actions" in the controller: We need to XE "to" make a couple of changes to our Recipes controller:

· The lifecycle actions XE "lifecycle actions"

 XE "actions" need to XE "to" be added to the controller so that the transition-buttons added above work correctly. To do this, just open up:

/app/controllers/recipes_controller

 and replace the existing auto_actions XE "auto_actions"

 XE "actions" list with this:

auto_actions XE "auto_actions"

 XE "actions" :all

Specifying :all will also add support for the lifecycle actions XE "lifecycle actions"

 XE "actions" .

4) Modify the Recipes Index page: The Recipes index page needs to XE "to" be modified so that it only shows published recipes when the user is XE "is" a Guest, and all the Recipes for logged in users. So we need to do the following:
· We will add the following named_scope XE "named_scope" to XE "to" the Recipe model:

named_scope XE "named_scope" :viewable, lambda {|acting_user XE "acting_user" | {:conditions => "#{acting_user.signed_up? XE "acting_user.signed_up?" ?1:0}=1 or lifecycle_state XE "state" ='published'" }}

which returns all Recipes for logged in users, and only published recipes to XE "to" Guest user XE "Guest user" s.

Note: The lambda block is XE "is" used so that we can pass in a parameter to XE "to" a named_scope XE "named_scope" , which in this case is a reference to the logged in user.)
· The Recipe controller index action XE "action" needs to XE "to" be modified so that when a Guest user XE "Guest user" is XE "is" viewing the Recipe listing page, only “published” Recipes will be shown. To do this, change the following line by inserting in the highlighted text:

Original:

hobo_index Recipe.apply_scopes(:search XE "search" => [params XE "params" [:search], :title, :body XE "body"], :order XE "order" _by XE "order_by" => parse_sort_param XE "parse_sort_param"

 XE "param" (:title, :country))

To:

hobo_index Recipe.viewable(current_user).apply_scopes(:search XE "search" => [params XE "params" [:search], :title, :body XE "body"], :order XE "order" _by XE "order_by" => parse_sort_param XE "parse_sort_param"

 XE "param" (:title, :country))
5) Try it out: Restart your server to XE "to" see the changes. Following that, access the Recipe listing page as a Guest and you should see that there aren’t any Recipes showing (this is XE "is" because all the Recipes are in a state XE "state" of ‘Not Published’):
[image: image239.png]Guest -

L] ables, No Waiting

- =

My Recipes

P el - |

No recipes to display

Figure 242: Guest view Recipes - All recipes are in state XE "state" "Not Published"
If you login as a user you should see your recipes showing with ‘Publish’ buttons next to XE "to" each row:

[image: image240.png]7] LogeedinasAdmin Account Logout

Four Tables, No Waiting

My Recipes
There are 5 Recipes

New Recipe

P el - |

Barbecued Chicken Wings 2 sweet, hot American

Omelet. 2 hot, sour American

French Fries 1 salty French

Hamburger 0 (none) =l

Maryland Crab Cakes 2 salty, unique American

Figure 243: Recipes ready to XE "to" Publish.

To publish a Recipe just click on the ‘Publish’ button. For this example, I’ll publish the Omelet recipe. After clicking on the button, I’ll get the show page for the Omelet.

[image: image241.png]‘admin@barquincom ~ L U

Four Tables, No Waiting

et Edit Recipe

Figure 244: Omelet recipe after being placed in the "Published" state XE "state"
And if I go back to XE "to" my Recipe listing page I see:

[image: image242.png]admin@barquin.com ~

Four Tables, No Waiting

Cotegories. || Countries

My Recipes

There are 5 Recipes

New Recipe

P el - |

Sarbecusd Chcken Wings E o P
Onetet 2 - P
e o p— p—
French ries : sty French
Maryland Crab Cakes 2 salty, unique American

Figure 245: Recipe index with buttons for "Publish" and "Not Publish"

Since my Omelet recipe has been published, the only available action XE "action" for it is XE "is" to XE "to" ‘Not Publish’ it.

If I go to XE "to" the Recipe listing page as a Guest user XE "Guest user" , I should now see my Omelet recipe:

[image: image243.png]Guest -

Four Tables, No Waiting
-

My Recipes

There s 1 Recipe

P el - |

Omelet 2 hot, sour American

Figure 246: Guest user XE "Guest user" can only see the published Recipe

6) Improve the navigation: So at this point we are able to XE "to" Publish and Not Publish our recipes, so our workflow is XE "is" behaving as we expect. But the navigation can be improved and would be cleaner if after we clicked on a transition XE "transition" button the page would just refresh instead of taking us to the show screen for the recipe. To do this, we will need to override the default lifecycle actions XE "lifecycle actions"

 XE "actions" in the Recipes controller.

For each transition XE "transition" we define, hobo creates 2 controller actions XE "actions" , 1 for a GET request and 1 for a PUT request. So, for the Publish transition action XE "action" , hobo creates a publish action for GET requests, and a do_publish action for PUT requests. The publish action would be used if we wanted to XE "to" show a form XE "form" before executing the transition action, i.e. if we wanted to collect comments from the user before he/she Publishes or Not Publishes, we could show a form with a comments box and a Publish/Not Publish submit XE "submit" button. But in this example, we just want to configure the application so that after a Recipe is XE "is" Published or Not Published, the browser should redirect back to the Recipe listing page. To do this we’ll add the following 2 actions to our Recipe controller just after the index action:

 def do_publish

 do_transition XE "transition" _action XE "do_transition_action"

 XE "action" :publish do
 redirect_to XE "redirect_to" recipes_path

 end
 end
 def do_not_ XE "not_" publish

 do_transition XE "transition" _action XE "do_transition_action"

 XE "action" :not_ XE "not_" publish do
 redirect_to XE "redirect_to" recipes_path

 end
 end

These actions XE "actions" override the default hobo actions so that we can specify the page redirect after the transition XE "transition" has been executed. Once you have added these actions, if you access the Recipe index page and click on a Publish or Not Publish button, you’ll just see the page get refreshed.

So now you have a working Publish/Not Publish workflow for Recipes in the Four Tables application.

Note: This example is XE "is" a basic implementation of Hobo lifecycles, but, it does serve as a good introduction to XE "to" its various features. It is possible to implement workflows with numerous states and transitions XE "transitions" , and the ability to implement more fine-grained security for each transition XE "transition" using the :available_to argument. Consult the full Hobo Lifecycles XE "Hobo Lifecycles"

 XE "Lifecycles" overview in Chapter 7.

Tutorial 23 – Creating an Administration Sub-Site XE "Administration Sub-Site"

 XE "Sub-Site"
By Bryan Larsen

This tutorial will show how you can create an administrative sub-site for a Hobo. This will allow the administrator to XE "to" create, update XE "update" and destroy any database row without writing any view code.

Generator steps

Let’s add an admin sub-site to XE "to" the project we created in the “Agile Project Manager” tutorial.
\projects> ruby script/generate XE "ruby script/generate" hobo_subsite XE "ruby script/generate hobo_subsite"

 XE "subsite" --make-front-site admin
\projects> ruby script/generate hobo_front_controller admin::front --add-routes XE "--add-routes"

[image: image244.png]Command Prompt

:\tutorials\projects>ruby script/generate hobo_subsite --makefront-site admin
Renaming app/views/taglibs /application.dryml to app/views/taglibs/front_site.dryml
CReatt " app/views /tag]ibs/app1ication.drynt
create app/controllers/admin
create app/views/admin
create app/controllers/adnin/admin_site_controller.rb
create app/views/taglibs/adnin_site.dryml

:\tutor{als\projects>ruby script/generate hobo_front_controller adni
axios R controtfersyamin

create app/helpers/adnin

create app/views/admin/front

create test/functional /admin

create app/controllers/adnin/front_controller.rb

create test/functional/adnin/front_controller test.rb

create app/helpers/adnin/front_helper.rh

create app/views/admin/front/index.dryml

create app/views/admin/front/sumary. dryn]

:\tutorials\projects>

s:front ——add-routes

Figure 247: Generator console output for creating an admin sub-site

Model Modifications

We would like to XE "to" “hide” our code table maintenance the admin sub-site. Currently we have one code table, requirement_statuses (model = RequirementStatus).

Let’s first change all of the permissions for this model to XE "to" “true”, as only an administrator will be able to access this sub-site:

[image: image245.png]1
2

3| nobo_model # Don't put anything above this
a

5G] rields do

6 nene :string

7 tinestanps

all ena

s

10

1 Pernissions

12

130 def create permittea?

14 true

15 # acting_user.adninistrator?
16l ena

17

180 det wpdate_permittea?

15 true

20 # acting_user.aduinistrator?
21l ena

22

230 det destroy permittea?

21 true

25 # acting_user.aduinistrator?
26l ena

27

280 def view permitted?(rield)

25 true

30l ena

o

a5 Llena

Controller Modifications

We need to XE "to" move the controller for RequirementStatus to the admin folder and modify it to be:

Class Admin::RequirementStatusesController < Admin::AdminSiteController
 hobo_model XE "hobo_model" _controller XE "hobo_model_controller" RequirementStatus
 auto_actions XE "auto_actions"

 XE "actions" :all
end

[image: image246.png]File Edit View Text Navigation Bundes Help

Profect][] 0 requrement_statuses_controllersb @

& rotecs]
S
=) controllers

lclass Aduin: :RequirenentStatusesController < Aduin::AdminSiteController

hobo_nodel_controller Requireuentitacus
1

adrin_site_controler.tb
%2 frot_controler b

2 requiement_statuses_controllr b
appication_controler.rb
front_controler.rb
projcts._controler.b
vequirements_coriroler b
tasks_controler b
users_contzoler rb

EESE e

lend

fi
2
5

= 3 adnin 1 auto_actions
s
3

Figure 248: View of the Admin folder contents

At this stage you should be able to XE "to" run your application. If you browse to "/admin", you can create, remove, update XE "update" and destroy any requirement status:

[image: image247.png]Hie Edt Yew Higtory Bookmarks Tools Help

o;,‘. C X G (D) moiocabostsounjodrin el B J

Hostsed > GttingSartod 5] Ltest Hoadines|

] Home The Agil Project Manage: e

odali@barquin.com ¥

The Agile Project Manager - Admin

Requirement Statuses

Welcome to The Agile Project Manager - Admin

Congratulations! Your Hobo Rails App is up and running
o To customise this page: edit app/views/ front/index.dryml

Figure 249: View of the Admin Sub-Site XE "Sub-Site"
Tutorial 24 – Installing and Using GIT

GIT has become the standard distributed version control system for Ruby and Rails 4applications, in part due the success of the social coding site, http://github.com XE "github.com" .

On gihub you will find thousands of public and private projects aided by the extremely useful Web 2.0 user interface designed with distributed coding in mind. Hobo XE "Hobo" ’s code base is XE "is" located there. You can access the source, view the change history, and view the branching and merging of code as members of the open source community participate:

[image: image248.png](«)-)=(c) () (git " up://github.com/tablatom/hobo/ commits /master V2 v)= (8 purygen home

ithub —

g Barquin account profie | log out
SOCIALCODING 50,50 | Guics | Advanced. 0 dashboard | gists.

Source Commits Network (28) Issues(0) ~ Downloads (12) ~ Wiki(44) Graphs
master allbranches alitags comments

tablatom / hobo download
Description: The web app builder for Rails
Homepage: http://hobocentral.net

Clone URL: git//github.com/tablatom/hobo.gi

hobo / Commit History

2009-08-28
Iain's patch is great, but we still want old behaviour if there are no comit 374d4704300f f7bS8d15F372796572801b045
tree 9a4647802cdcC7e6900072FSB27b4a4478Fa9BOS
bryanlarsen (author) parent aleb3ef3a7f14682fe9fa013045adc7fbc301025
5 days ago

Changed table-plus to use view hints in the column headers (before it was ~commit aleb3ef3a7f14682fe9fa0130450dc7 bc301025
just titleizing the column name) tree 250f9130d652350488d100354000760657433ed
parent 369e99967088F7445308012062 61106307022

August 04, 2009

bryanlarsen (commiter)
5 days ago

Figure 250: Hobo XE "Hobo" source code on github.com XE "github.com"
It is XE "is" also where the Hobo XE "Hobo" gems XE "gems" are stored:

[image: image249.png](«)-)=(c) () (gt hutp://github.com/tablatom/hobojdownloads 77 v)= (58 puttygen home

githUb] Barquin acoount profle llog out
Browso | Guides | Advarcod . o dashboard | gists

1SOCIAL CODING.

Source Commits Network (28) Issues (0) ~ Downloads (12) = Wiki(44) Graphs

tablatom / hobo
Description: The web app builder for Rails

Homepage: http:/hobocentral.net

Clone URL: git//github.com/tablatom/hobo.git

Name Description Uploaded size

No Downloads Yet

Tag Download Description Date Commit
© v0.8.8 tgz | zip bump gen to 0.8.8 2009-06-24 a3460a6
© ve.8.7 tgz | zip Bump gem to 0.8.7 2009-05-14 1136ca0
© V0.8.5 tgz | zip Merge branch ‘master' of gitegithub.com: tablatom/hobo 2008-12-09 184e334
© ve.8.4 tgz | zip Lifecycles - fix to record.lifecycle.valid_for_*? 2008-12-05 0809694
© v0.8.3 tgz | zip Updating version numbers for 0.8.3 release 2008-10-15 ffcveea
© ve.8.2 tgz | zip Changelog and version numbers for 0.8.2 release 2008-09-13 00ddv6S
© ve.8.1 tgz | zip Bump version numers for 0.8.1 release 2008-09-08 4207908
© ve.s tgz | zip Oops (missed from last comrit) 2008-09-03 6339f11
© ve.7.5 tgz | zip Switching from hoe to echoe for the hobofields and hobosupport gems 2008-04-18 2535ca2
© ve.7.4 tgz | zip Changelog 2008-04-07 6765145

Figure 251: Hobo XE "Hobo" gems XE "gems" are also available on github.com XE "github.com"
Barquin International also uses Github as the central hub for developing several large-scale Hobo XE "Hobo" projects that involve participants from several countries.

In this tutorial we will focus on the Windows user, as GIT is XE "is" much easier for Mac OS X and Linux users. You only need to XE "to" learn a few commands for basic usage. There are many outstanding resources for more in-depth understanding, including the excellent https://peepcode.com/products/git-internals-pdf by Scott Chacon.

There is XE "is" an excellent tutorial for Mac users:

github.com" http://help.github.com/mac-git-installation/

[image: image250.png]<) r € C [).[http://help.github.com/mac-git-installation/ Wy installing git on the mac

help.github oo b s

Installing git (OSX)

There are a number of methods to install git on OSX. This guide details the most common methods.

~ Setup

Installing git (OSX)
How to install git on OSX

Generating SSH keys (0SX)

Pre-compiled Installer Setting up SSH keys on Mac
osx

Download and run git-osx-installer Generating SSH keys
(Win/msysgit)
Setting up SSH keys with

MacPorts msysgit on Windows

Troubleshooting SSH
Solutions to common SSH
issues

ues
1. Install MacPorts if you haven't already done so.

2. Make sure your ports are up to date.

3. Install Git (You may want to include Subversion support if you want to import SVN repositories)
Setting user name, email and
GitHub token
$ sudo port selfupdate Configure your local git

installation so that commits are
linked to your GitHub account
Installing Git HTML help

The MacPorts installation is not outdated and so was not updated How to nstall the local git
selfupdate done! HTML help files

MacPorts base version 1.600 installed
Downloaded MacPorts base version 1.600

sudo port install git-cor

core +svn » Repos
> Installing curl 7.18.2.0 » Collaborating
> Activating curl 7.18.2_

Figure 252: Installing Git XE "Git" for Mac OSX

OK. So let’s get the software we need for GIT:

[image: image251.png]ttpjcode. goole.comjpjmsysqtjdowrloads ist

mysysqt dovrrioad 7

My favorites v] | Sign in

4 | (Search projects]
T Git on Windows
ProjectHome Downloads Wi Issues Source
Search | Currentdownioads v | for | | [searcn]

1-60f6
Filename ~ Summary + Labels © Uploaded = [Size > DownloadCount ~
Git: 1.5 A-preview20090730.exe Fullinstalle if you want to use oficial Git 1.6.4 Festured Beta Jul29 1.3 MB 24007
PortableGit-1.5.4-preview20090729.72 Portable application if you want to use ofiicial Git 1.6.4 Featwed Beta Jul 29 109 MB 3172
msysGitnetinstal- 1 B 4-preview20090730.exe Net installer if you want to hack on Git Bets 229 24M8 789
msysGit-fullinstall-1B.4-previen20090729 exe Fullinstaller (selfcontained) if you want to hack on Git Beta 229 31.0MB 2818
msysgitiogo.png MSysGit logo Mar 09 14KB 75852
gitiogo.suy Git Logo as SVG Oct2007 33KE 12045

1-BofB

Figure 253: Download the mysysgit XE "mysysgit" installer for Windows

Download and run the GIT installer for windows:

[image: image252.png]Ble Edt Vew Higtory Bookmarks Tooks Help -

@ c x ol

"9 | htpicode.google. comfpimsysaltjdawnloads{detailname=msysatiago. prgcan=25a= mysysgit download P

My favorites v] | Sign in

msysgit | (Search projects

Git on Windows

ProjectHome Downloads Issues Source

Search | Cunrent downioads v
Git Setup

Creznieek REpEER g Welcome to the Git Setup Wizard

Uploaded by: johannes. schindelin This wilinstall Git 1.6.-previen20090730 on your computer.
Uploaded: Mar09, 2009

Downloads: 75853

Itis recommende that you close ol ther applications before
conliuing, i

Click Nextto continue, o1 Cancel o exit Setup.

ol sting Help

Figure 254: Running the Git XE "Git" Setup Wizard

Select the following options XE "options" :

[image: image253.png]Git Setup

Select Additional Tasks
‘Which adidional taks should be performed? 0—

Selectthe addiional tasks you would ke Setup o perform while nstaling G, then cick.
Nest.

Addiional icons:

Create a Duick Launchicon

Create aDesklopican
‘Windows Explorer integration:
‘Add "Git Bash Here"

Figure 255: Git XE "Git" setup options XE "options"
Select the “Use OpenSSH” option:

[image: image254.png]Help

Fic [view Favortes Took

Q- O 3

File and Folder Tasks

address

Git Setup

Choosing the SSH executable

‘Which Secure Shell client program wouid you lice it to use? 0—

2 ke a e Folder

@ Publsh ths Flder tothe
e

7 shr tis okdr

Other Places

e Local Disk (C:)
) My Documerts
& shared Documents
My Computer
&y etk Places

Details

Tt/ /core oogle com/p/sysai

(@ Use OpenSSH
This uses ssh.exe that comes with Git. The GIT_SSH envionment
vaiiable il not be modiid.

O Use PLink

This uses ik eve fiom the PuTTY package which needs o be.
piovided by the user. The GIT_SSH envitonment vaiable il be
set1othe path to ik eve as specifed belon.

I

ES
7,346 KB
1,458 K8
28K8
7779K8
1,366 K8
1,838
151K8
a7k
151K8
21368
9,302K8
728K
568
728K
568
9750KB

L

o
e
aopca
appcat
e
aopca
opcat
appca
Conpres
Congres
Congres
P
appca
Conpres
Congres
Congres
Congres
i

Figure 256: Select the OpenSSH option

Allow the installer to XE "to" configure running GIT from the Windows command prompt:

[image: image255.png]Git Setup

Adiusting your PATH environment
How would you ke o use Git fiom the cormand line? 0—

O Use Git Bash only
This isthe most conservative choics if you are concemed about the stabily
of your system. Your PATH wil not be modifed.

() Run Git from the Windows Command Prompt

This option is considered safe and no corflicts with ther tooks are known.
Orly it will e aded to your PATH. Use this opton i you want to use Git
from a Cygin Prompt (make sure o ot have Cygwin's Gt nstaled).

O Run Git and included Unix tools from the Windows Command Prompt

Both Git and its accormpanying Urs tools willbe added to your PATH.

‘Warning: This will override Windows tools like find.exe and
sort.exe. Select this option only if you understand the implications.

Figure 257: Select to XE "to" option to run Git XE "Git" from the Windows commnd prompt

Next select the CR/LF behavior option:

[image: image256.png]Git Setup

Choosing CR/LF behavior
‘Which CR/LF behavior would you ke Git o have?

Gl

O Use Unix style line endings

Chaase this if a singl Line Feed character ends your ines. Most Windows
progams can cope with these e endings. However, sore editors, ke
Notepad, willshow everything n one e wih tis mode.

() Use Windows style line endings

Chaase this ifyour saurce code uses a Carfage Retum and aLine Feed
Gharacter o end nes. This s the DUS conveniion; yout checked-out fles
ight ot be handled gracefuly by MSYS / Cyguin command fne s

O Comit line endings as they are

Chaase this ifyou know what you are doing and want to ack the fles with
the line endings exacty as they appear nthe ies. This option might
cause your prjects to b hard o use on other plaforms.

Figure 258: Select Windows style line endings

After the installation is XE "is" complete, the release notes will be displayed.

Now download the PuTTYgen RSA/DSA secure key generator from this URL:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
Run the downloaded puttygen.exe file to XE "to" install:

[image: image257.png]Fle Edt View Favortes Took Help

Qo - © - (] Do i ros |-

Adress [C\pownads\GIT

t1.6.4-previe

= Gi

Ly

File and Folder Tasks

) Rename tis e
5 Move tis e
D) oy i i
@ Fubish this il o the Web
) Emaithisfle
. Delete this il

puttygen
PUTTY S3H key g
Simon Tatham

Other Places

& Dowrioscs
) M Documerts

& shared Documents
My Computer
&y etk Places

& PuTTY Key Generator,

Fie Key Conversions Help

Key

Flease generate some randormness by moving the mouse over the blark area

Actons
Generate a pubic/prvale key par
Load an eistng vt ke fe
Save the greratedkey

Parameters

Type of key to generate:
55H-1 (RSA)

Nurmber ofbits in a generated key:

SSH2RSA

Generate
Load

Save publickey | | Save pivete key

S5H2DSA

[102¢

Figure 259: Running the PuTY Key Generator install

Open up the application and start the process of generating key pairs:

[image: image258.png]& PuTTY Key Generator,

Fie Key Conversions Help

Key

Publc kep for pasting nto OpenSSH authorzed_keys fl:

sshisa
ABAABINzaC1yc2E ARAABIDARAIE AR pKS

FIDEULdoolp T DrV7d8K20eSK /K33

KIN20350v'YFun2+DincHFYBPRPLIOKSCy W4l HriZNigHYJCd7 256 Y Y gEn20wkaF

Opihko/202DkDlba0pdym22WBMOIN2IZE
mTk= sarkey 20030830

Key fingerpint sshisa 1024 15,3454
Key commert: sarkey 20030830
Key passphrase:

Corfim passphrase:
Actons

Generate a pubic/prvale key par
Load an eistng vt ke fe
Save the greratedkey

Parameters

Type ofkey o generale:
O 's5H-1 [RsA) @ ssH2RsA

Nurmber ofbits in a generated key:

BILGZE +AIZWBWEbT kR YHWS

87.41 ba el 94 dbroBec Bl Fo.dB34 1

Load

Sevepitiote

(O 55H-2084
1024

Figure 260: Generate SSH key pairs for use with Git XE "Git"
Saving the files with default names:

[image: image259.png]Save public key as:

savin [@ 01 o @ o
. & Gt 6.4 prevencoosoran
,5 Bk

MyRecent |E]Privatekey.pok
Documerts |)pubickey

BPrutygen

Fie name I

Saveastpe: [AlFies ()

My Network

Figure 261: The default file names generated by PuTTYGen

Private key = “PrivateKey.ppk”

Public Key = “Publickey”

You will need to XE "to" rename XE "name" these and put them in the USERPROFILE environment setting default location that most systems will look.

[image: image260.png]r Command Prompt

ommonProgrant 1es=C: \Program Files\Common Files
OMPUTERNAME=OWENDALL 1388
omSpec=C : \WINDOWS\system3z\and . exe
FFP_NO_HOST _CHECK=NO
HOMEDRIVE:
HOMEPATH=\Document:s and Settings\Adninistrato
 |LOGONSERVER=\\OWENDALL 1388
.| NOMBER_OF_PROCESSORS=1
S=indows_NT
Path=c: \rUby\bin;C: \WINDOWS\system32 ;C: \WINDOWS ;C: \WINDOWS\System32 \whem;C :\Prog
rogran Files\Giticnd
PATHEXT=.COM; .EXE; . BAT; .CHD; .VE:
PPROCESSOR_ARCHITECTURE=x86
PROCESSOR_TDENTIFIER=xB6 Family & Mode] 23 Stepping 6, GenuineInte
PPROCESSOR_LEVEL=6
PPROCESSOR_REVISION=1706
ProgranfiTes=C: \Program Files
PROMPT=§PSG
4 RUBYOPT

VEE; .3

ISE; . WSF; WS

RE; .REW

e e v

SystenDrivi
SystemRoot=C: WINDOWS
+\DOCUME~1 ADMINT ~1\LOCALS~1\Temp
DOCUME~1\ADMINI~1\LOCALS~1\Temp
USERDOMAIN=OWENDALL 1388

Documents and Settings\Administrators AJ‘J

Figure 262: Locating your USERPROFILE setting

I was logged in as the user “Administrator” in windows when I tried to XE "to" use the Heroku XE "Heroku" gem (see next chapter):

[image: image261.png]Command Prompt

:\tutorials\four_tahlesheroku create
[Enter your Heroku credentials.
Email: barquindevignail.com

Password:
Mo ssh public key found in C:\Documents and Settings\Administrator/.ssh/id_[rd]sa.pub. You may want
to specify the full path to the keyfile.

s\tutorials\four_table>

Figure 263: View of "no ssh public key found" error

So Heroku XE "Heroku" was looking for the file id_rsa.pub XE "id_rsa.pub" (since I was used the RSA option with PuttyGen) in the default folder:

C:\Documents and Settings\Administrator\.ssh
So I moved the keys as follows:

[image: image262.png]Fle Edt View Favortes Took Help

O - © - (] Do [rots

#ddress | C:\Documents and SettingslAdministratorl.ssh

Name ES
File and Folder Tasks Hitrsa 218

rsaput e
2 ke a e Folder [e

@ Publsh ths Flder tothe
e

7 shr tis okdr

»)

Other Places

Type
Fie
PUBFle
Fie

Date Modfied
9/1/2009 1:19 P
8312009 4:10 PM
9/1/2009 6135 AM

Figure 264: Naming your SSH key pairs
 (The known_hosts file will be created and updated automatically when you connect to XE "to" Heroku XE "Heroku" .)
Now you are ready to XE "to" use GIT. See Chapter 24 for how GIT is XE "is" used to deploy your application to Heroku XE "Heroku" .com XE "Heroku.com" .
Tutorial 25 – Rapid Deployment with Heroku XE "Heroku" .com XE "Heroku.com"

We have been following the development of Heroku XE "Heroku" for over 18 months now, ever since we applied for Beta access:

[image: image263.png]Conveyor Rails - www.business.com - Industrial Solutions & Resources. Search Our Leading B2B Directory. Sponsored Link [<||>|

«Back to Search Results | Archive | Reportspam | Delete | | Movetolnbox | | Labelsv | More actions v < Newer 254 of 254
Invitation to Heroku Beta mbox |x 3 New window
) Printall

Heroku to me show details 2/14/08 = 4y Reply | ¥
YYou've been invited to the Heroku beta.

£ Tum off highlighting

Heroku lets you create web applications right in your web browser. Follow the link to activate
your account, then create Rails apps instantly:

http://heroku.com/core/invitation/accept/81c27dbaf2

To learn more about Heroku, check out our public website:
http://heroku.com/
Have fun, and don't hesitate to drop us a line with your comments or questions.

- James, Adam, and Orion

4 Reply =P Forward

Figure 265: The original Heroku XE "Heroku" beta invitation

According to XE "to" Wikpedia, it has been in development since June of 2007, with an initial investment of about $3 million dollars. It was one of the first to use the new Amazon Elastic Compute Cloud (EC2) as its infrastructure. http://aws.amazon.com/ec2/
For more details on this innovative architecture, see:

http://heroku.com/how/architecture
For information for pricing and options XE "options" :

http://heroku.com/pricing#blossom-1
[image: image264.png]Heroku | Pricing

 Blossom 1

1. Choose your database

Shared Cluster Dedicated

Light to medium data needs? Our shared Need muscie? Choose a high-performance /
cluster Is simple and cost-effective. high-capacity database box. Fully managed.

Blossom FREE Ronin 200
SMB storage 1 compute un, 500G storage
Fits 2 log, personal ie or small Guaranioed performance for

project wii " heavy duty, high-trafic apps.

Koi 15 Fugu 400
SOMB storage 5 compute unis, 178 storage
Great or a small company [a——
[rp———— ? Jismp—

How it Works | Pricing | Docs | Support

50

estimated monthly cost

2. Crank your dynos

Dynos determine your HTTP performance.
Use more to Increase concurrency.

Login

Figure 266: Using the free "Blossom" database hosting option on Heroku XE "Heroku" .com XE "Heroku.com"
For this tutorial, we are going to XE "to" use the free “Blossom” version for apps under 5MB in size XE "size" . In addition to choosing more storage capacity, you can add “Dynos” (processing power) to suit your needs, and choose your replication and backup options XE "options" . The database backend provided by Heroku XE "Heroku" is XE "is" PostgresSQL, a rock-solid choice in the open source world.

Of course you can always host your database elsewhere and use Heroku XE "Heroku" for your Hobo XE "Hobo" or Rails front end. The nice thing about Heroku is XE "is" the database migration XE "migration" and setup is transparent, so you can develop your app using SQLite and then deploy your app to XE "to" Heroku’s PostgresSQL back-end transparently.

For this tutorial we will use the “four_table” application will built in the earlier tutorials and deploy it to XE "to" Heroku XE "Heroku" .

Step 1: Install and Configure GIT

If you haven’t done so already, please follow the instructions in Chapter 23 – Installing and Using GIT.

Step 2: Create XE "Create" an Account at Heroku XE "Heroku" .com XE "Heroku.com"
Go to XE "to" http://heroku.com/signup:

[image: image265.png]How it Works | Pricing | Docs | Support

Sign Up

Signing up for Heroku is easy. Just enter your email
below, and you'll be up and running in a minute.

B
1

Figure 267: Sign Up for a Heroku XE "Heroku" account XE "account"
Enter the email address you wish to XE "to" use for communication with Heroku XE "Heroku" . Heroku will send a confirmation email with a link to access your account XE "account" .

[image: image266.png]How it Works | Pricing | Docs | Support Login

Sign Up

Figure 268: Heroku XE "Heroku" notification that "Confirmation email sent"
Going to XE "to" you email to access the confirmation link you will need:

[image: image267.png](4) >)= (@) (%) () (14 np://mailgoogle.commai7shva=1#inbox/ 1236030018961 (33:(define herokuEc2

Gmail Calendar Documents Photos Reader Sites Web more v barquindev@gmail.com | Settings | Older version | Help | Sian c
H Show search options
Gmail (o] [t S
Coogle
Compose Mail CloudCache for Rails - www.quetzall.com - gem install cloud_cache Acts as ActiveSupport Cache Sponsored Link [<][>
Inbox (3) «Backto Inbox | Archive | Reportspam | Delete | | Movetow Labelsy More actionsy | 10f 4 Older>
Starred %)
Sent Mail Invitation to Heroku msex |x (5 New window
Drafts & Printall
— Heroku to me show details Aug 30 (5 days ago) | 4y Reply | ¥
Personal ‘Sponsored Links
Travel Heroku is a platform for instant deployment of Ruby apps. Develop your app using your local
5 more tools, then deploy via Git and the Heroku gem. Follow the link to activate your account: Run Ruby Rails
S morev Deploying Rails on EC2?
http://heroku.com/signup/accept/0b7bcébd18 Call RightScale 1.866.586.2133.
Contacts www.RightScale.com
Tasks To learn more about deploying apps on Heroku, check out the docs:
Ruby on Rails Experts
- Chat http://docs.heroku.com/ We build rich internet apps.
‘and data-driven websites
Search, add, or invite Have fun, and don't hesitate to contact us with your feedback. wenitobi. com/services/ruby
Rails Jobs
Ower - The Heroku Team Rails Jobs
© Ouen Dal http://heroku.com/ We work with startups
Set status here v - - seeking RoR developers.
www.mirRoRplacement.com
@ Cincom Smalltalk
Tr Free Download
Text chats are saved and OReply = Forward sz:;&kmmm';mummy
searchable. ‘www.cincomsmalltalk.com
Learn more _ _

Figure 269: Locating your "Invitation to XE "to" Heroku XE "Heroku" " email
When you click the confirmation link, you should see a screen similar to XE "to" the following:

[image: image268.png]Heroku

XX

H

ttp:

[+

Welcome to Heroku

Now, let's set up your account. Enter a password and we'l
get straight to the important business of building Rails
apps.

Ii

How it Works | Pricing | Docs | Support

Figure 270: The "Welcome to XE "to" Heroku XE "Heroku" " signup page
And then this when you finish:

[image: image269.png]heroku How it Works | Pricing | Docs | Support My Apps | My Account | Logout

Welcome to Heroku!

Hi barquindev@gmall.com. You don't curently have any apps deployed on Heroku. This
‘guide will get up and running in no time.

Install the Heroku gem:

sudo gem install heroku

Create a new git repository for your app (if you haven't already):

cd myapp
gitinit 8& git add . && git commit -m *irst commit*

More on using Git with Heroku. —

Create a new Heroku app:

heroku create
Created http://sharp-autumn-42.com/ | git@heroku.com:sharp-autumn-42.git
Git remote heroku added

NOTE: The app's name is generated automatically; don't worry, you can rename it at any
time.

Figure 271: The "Account Created" message at Heroku XE "Heroku" .com XE "Heroku.com"
The instructions that are displayed on the “Welcome to XE "to" Heroku XE "Heroku" !” splash screen are tailored for the Mac or Linux user. We’ll provide the Windows equivalents below.

Step 3: Install the Heroku XE "Heroku" Gem

Go to XE "to" you command prompt and type the following command:

C:\ruby>gem install heroku

[image: image270.png]Command Prompt 5

Tnstalling
Tnstalling
Tnstalling
Tnstalling
Tnstalling
Tnstalling
Tnstalling
Tnstalling

|tnstalling

Tnstalling

ruby>

<

:\ruby>gen install heroku
Successfully installed rest-client=1.0.3
Successfully installed configuration-0.0.5
Successfully installed Taunchy-0.3.3
Successfully installed json-1.1.7-xE6-mswin3
Successfully installed

S gems_installed

ri documentation for r
ri documentation for c
ri documentation for 1

ri documentation for

ri documentation for

RDoc documentation
RDoc documentation
RDoc documentation
RDoc documentation
RDoc documentation

For
For
For
For
For

eroku-1.1

est-client-1.0.3.
onfiguration-0.0.5.
aunchy-0.3.3.

Son-1.1.7-xB6-mswin32. ..
eroku-1.1.
rest-ciient-1.0.3.

sonfiguration-0.0.
Taunchy=0.3.3

json-1.1.7-xB6-mswin32...

eroku-1.1.

Figure 272: Installing the Heroku XE "Heroku" Ruby gem
Note the other four gems XE "gems" that are installed along with the Heroku XE "Heroku" gem.

Step 4: Use GIT to XE "to" package your application

Initialize GIT for your app:

C:\tutorials\four_table> git init

Tell GIT to XE "to" add all the files in all folders to the project:

C:\tutorials\four_table> git add .
Tell GIT to XE "to" commit these additions and enter an optional message that helps for version control:

C:\tutorials\four_table> git commit –m “My first Commit”
Step 5: Use the “heroku create XE "heroku create" ” command to XE "to" Initialize your application

Change your directory to XE "to" c:\tutorials\my-first-app and then execute the command while in the root directory of the app.

C:\tutorials\four_table> heroku create XE "heroku create" four_table

[image: image271.png]Fimot rotle 10064 ... Er., gt /fer Foimae ayvedchimr ke -
create mode 100644 Script/per formance/profiler
create mode 100644 script/plugin

create mode 100644 script/runner

create mode 100644 script/server

create mode 100644 test/fixtures/categories.yml
create mode 100644 test/Fixtures/category_assignments.yml
create mode 100644 test/Fixtures/countries.yml

el sE e el et

create mode 100644 test/Fixtures/users.ym

create mode 100644 test/functional/categories_controller_test.rb
create mode 100644 test/functional/countrias_controller_test.rb
create mode 100644 test/functional/front_controller_test.rb
create mode 100644 test/functional/recipes_control lar_test.rh
create mode 100644 test/functional/users_controller_tast.rb
create mode 100644 test/performance/brovsing_test.rh

create mode 100644 test/test_helper.rb

create mode 100644 test/unit/category_assignment_test.rb
create mode 100644 test/unit/category test.rb

create mode 100644 test/unit/country_test.rh

create mode 100644 test/unit/recipe_test.rb

create mode 100644 test/unit/user_test.rh

€:\tutorials\four_tablesheroku create four_table
Name must start with a letter and can only contain letters, numbers, and dashes

(C:\tutorials\four_tablesheroku create four-tahle
Created http://four—table.heroku.com/ | gitGheroku.com: four-table.git
(Gi¢ ramote heroku added

C:\tutorials\four_table>

Figure 273: Console output from the "heroku create XE "heroku create" " command
Note: The first time you try to XE "to" create using the heroku gem you will be prompted to enter your user name XE "name" and password that you provided heroku while creating an account XE "account" :

Looking at the output you can see that we could not create the application “four_table”, as Heroku XE "Heroku" does not allow an underscore in a name XE "name" . We need to XE "to" change the name of our app and try again:

C:\tutorials\four_table> heroku create XE "heroku create" four-table

And then

C:\tutorials\four_table> git push heroku master

[image: image272.png]Command Prompt

\tutorials\four_tablesgit push heroku master
ounting objects: 151, done.

ompressing objects: 100% (128/128), done.

riting objects: 100% (151/151), 167.89 Kik, done.
fotal 151 (delta 19), reused 0 (delta 0)

> Heroku receiving push
> Rails app detected
Compiled slug size is 120K
> Launching. done
177 Agp.crashed diring startup
! Visit http://four-tahle.heroku.com to see the crashlog

[To git@heroku. com: four—table.git
[new branch] master -> master

|
.
s \tutorals\four_table>
|

Figure 274: Using heroku git push XE "heroku git push"
OK. So our app launched, but then crashed. What we forgot to XE "to" do is XE "is" to inform Heroku XE "Heroku" to add the Hobo XE "Hobo" gem to our application. We can do this by adding an instruction:

[image: image273.png]C:Mutorials\four_tablel.gems -
Edt Vew Text Nevigation Bundes Help

Profect 8[| Qeems @

ﬁg—r::—aw 1 [nobo --source gems. github. con|
S

S iy
=1y

& e
S
=

S e
D seript
Dtest
S
&) vendor
=) .gems
5] Rakefile
5 rReaome

.

Figure 275: Telling Heroku XE "Heroku" where to XE "to" find your application's gems XE "gems"
Create XE "Create" a text file with the name XE "name" .gems XE "gems" in the application’s root folder. Add the following text:

hobo –source gems XE "gems" .github.com XE "github.com"
Now we need to XE "to" use GIT again to add these changes and push them to Heroku XE "Heroku" :

C:\tutorials\four_table> git add .

C:\tutorials\four_table> git commit –m “Added .gems XE "gems" definition file”

C:\tutorials\four_table> git push heroku master
[image: image274.png]L
3
3
3

Command Prompt 5

:\tutorials\four_tablesgit add .

:\tutorials\four_tablesgit commit -m “Added .gems file"
[master 4ad246a) Added .gems file

1 files changed, 1 insertions(+), 0 deletions(-)
create mode 100644 .gems

\tutorials\four_tablesgit push heroku master
ounting objects: 4, dona.

ompressing objects: 100% (2/2), done.

riting ohjects: 100% (3/3), 208 bytes, done.
Total 3 (delta 1), reused 0’ (delta 0)

——> Heroku receiving push

> Installing gem hobo from http://gems.github.com, http://gems.rubyforge.org
Successfully Installed hobosuppare-0;8.8
SuccessFully dnstalled hoborialds=0.5.8
Successfully installed mislav-will_paginate-2.3.11
Successfully installed hobo-0.8.8
4 gems installed

Rails app detected
Compiled slug size s 644K

Launching. done

http: //four~tahie. heroku.com deployed to Heroku

o git@heroku. com: four-table.git
2615c22..4ad246a master -> master

s\tutorials\four_table>

Figure 276: Adding your “.gems XE "gems" ” config file to XE "to" your git repository

Note that the additional gems XE "gems" that Hobo XE "Hobo" uses (dependencies) were automatically installed as well.

Step 6: Migrate your database schema XE "database schema" to XE "to" Heroku XE "Heroku"
Your UI XE "UI" is XE "is" up and running, but your database has not been migrated until you do this:

C:\tutorials\four_table> heroku rake XE "rake" db:migrate XE "rake db:migrate"
[image: image275.png]Command Prompt

:\tutorials\four_tahlesheroku rake db:migrate

(Vv fdiskl/home/sTugs /51088_4ad246a_60aB/mnt)
HoboMigrationl: migrating

creata fabTactusers)

-> 0.0190s

HoboMigrationl: migrated (0.01925) =

HoboMigration2: migrating
create_table(:recipas)
> 0.0201s

HoboMigration2: migrated (0.0201s

HoboMigration3: migratin
renane Gotum:racipes, fbodv, :hody)
-> 0.0012s

HoboMigration3: migrated (0.0013s

HoboMigrationd: migrating
create_table(: countries)
-> 0.0073s

- add_column(:recipes, :country_id, :integer)
> 0.0012s

HoboMigrationd: migrated (0.00865)

HoboMigrations: migrating
create_tahle(:category_assignments)
-> 0.0068s
- create_table(:categories)
-> 0.0060s
- remove_column(:recipes, :country)
> 0.0014s
HoboMigrations: migrated (0.01455) =

s\tutorials\four_table>

Figure 277: Migrating your database schema XE "database schema" to XE "to" Heroku XE "Heroku" .com XE "Heroku.com"
Step 7: Test your application

Log into Heroku XE "Heroku" .com XE "Heroku.com" to XE "to" see the application URL:

[image: image276.png]heroku

four-table

General Info

Resaurces

Name

Heroku URL

Custom Domain 2

Collaborators

GitRepo

Data size

HowitWorks | Pricing | Docs | Support

hitp:/ffour-table.heroku.com

adall@barguin com (awner)

gitBhercku. con: four-table. git

Repo Size: 624 KB
Slug Size: 644 KB of 20mh 2.

0 Bytes in 0 tables

My Apps | My Account | Logout

Figure 278: Testing your Heroku XE "Heroku" app

http://four-table.heroku.com
[image: image277.png]) - C X G (1) rtmiifour-table heroku.com 7

Four Tables, No Waiting

Recipes || Categories || Countries

Welcome to Four Tables, No Waiting
Congratulations! Your Hobo Rails App is up and running

List My Countries

Figure 279: Running the "Four Table" app on Heroku XE "Heroku" .com XE "Heroku.com"
Note: You can set up your application to XE "to" use an existing domain name XE "name" instead of heroku.com. See the information located on this link:
 http://docs.heroku.com/custom-domains
Step 8: Use the Taps gem to XE "to" push data to your app on Heroku XE "Heroku"
The data we created in earlier tutorials has not yet been loaded to XE "to" Heroku XE "Heroku" . However, we can easily do this with Heroku by installing the “taps” gem:

C:\tutorials\four_table> gem install taps

[image: image278.png][<commanapony — P

:\tutorials\four_table>gem install taps
Successfully installed sinatra-0.9.2
Successfully installed actjvesupport=2.2.2
Successfully installed activerecord-2.2.2
Successfully installed thor-0.9.9
Successfully installed sequel-3.0.0
Successfully installed taps-0.2.19
6 gems_installed
Tnstalling ri documentation for sinatra-0.9.2.
Tnstalling ri documentation for activesupport-2.2.2.
Tnstalling ri documentation for activerecord-2.3.2...
Tnstalling ri documentation for thor-0.9.9.
Tnstalling ri documentation for sequel-3.0.0...
Tnstalling ri documentation for taps=0.2.19...
Tnstalling RDoc documentation for sinatra-0.9.2...
Tnstalling RDoc documentation for activesupport-2.2.2...
Tnstalling RDoc documentation for activerecord-2.2.2
Tnstalling RDoc documentation for thor-0.9.9...
'tnstalling Rboc documentation for sequel-3.0:0
Tnstalling RDoc documentation for taps-0.2.19.

s\tutorials\four_table>

S

Figure 280: Installing the Taps gem to XE "to" upload data to Heroku XE "Heroku" .com XE "upload data to Heroku.com"

 XE "Heroku.com"
Note that several other dependencies are also installed along with Taps.

Now you can use the following single command to XE "to" upload your existing (local) data to your version on Heroku XE "Heroku" :

c:\tutorials\four_table> heroku db:push XE "heroku db:push"
[image: image279.png]e —,, -BF

Successfully installed taps-0.2.15 5|
6 gems_insta]led

Installing ri documentation for sinatra-0.9.2. J
Installing ri documentation for actjvesupport-2,2.2

Installing ri documentation for activerecord-2.2.2..
Installing ri documentation for thor-0.9.9.
Installing ri documentation for sequel-3.0.0..

Installing ri documentation for taps-0.2.19
Installing RDoc documentation for sinatra-0.9.2..
Installing RDoc documentation for activesupport-2.2.2...
Installing RDoc documentation for activerecord-2.2.2

Installing RDoc documentation for thor-0.9.9...
Installing RDoc documentation for sequel-3.0.0
Installing RDoc documentation for taps-0.2.13.

:\tutorials\four_tableheroku db:push
uto-detected local database: sqlite://db/development.sqlited
Sending schema

Sending data

6 tables, 23 records

schemamigrat: 100% | Time: ‘
users: 100% | Time
countries: 100% | Time I
category_assi: 100% | Time
categories: 100% | Time ‘
recipes: 100% | Time:

Sending indexes
Resetting sequences

:‘\tutori als\four_tables
‘

Figure 281: Using "heroku db:push XE "heroku db:push" " to XE "to" push data to your app on Heroku XE "Heroku" .com XE "Heroku.com"
The log indicates that six tables with a total of 23 records were sent. Let’s look at the live app to XE "to" see:

[image: image280.png]<) »)= () x)M) ([http:/four-table.heroku.com/recipes Yo v 128
J

Logged in as Owen Account Log out

Four Tables, No Waiting
Categories || Countries seance [

My Recipes

There are 4 Recipes

awhae
B —
Barbecued Chicken Wings. 2 sweet, hot American
Omelet 2 sour, hot ‘American
Hamburger 0 (none) American

French Fries 1 salty French

Figure 282: The "Four Table" app on Heroku XE "Heroku" .com XE "Heroku.com" with data

Now let’s add a recipe for “Crab Cakes”:

[image: image281.png](4) >)= (C) () () (L1 np//four-table neroku.comyrecipes Zrv YA(8: Google

Four Tables, No Waiting

Categorles || Countries

My Recipes

There are 5 Recipes

New Recipe
P — - |
Recve Categris Count =
Barbecued Chicken Wings 2 sweet, hot American
‘Omelet 2 sour, hot ‘American
Hamburger 0 (none) American
French Fries 1 salty French

Crab Cakes 0 (none) American

Figure 283: Add a recipe on Heroku XE "Heroku" .com XE "Heroku.com"
Step 9: Pull changed XE "changed" data from Heroku XE "Heroku"
I can use the “pull” option to XE "to" backup my change on Heroku XE "Heroku" to my local database:

c:\tutorials\four_table> heroku db:pull XE "heroku db:pull"
[image: image282.png]Command Prompt of x;

:\tutorials\four_tahle>heroku db:pull
Uto-detected local database: sqlite://db/development.sqlite3
Receiving schema

Receiving data

6 tables, 24 records

users: 100% Time: O
countries: 100% Time: O
category_assi: 100% Time: O
lcategories: 100% Time: O
recipes 100% Time: O
ischema_migrat: 100% Time: 00:

Receiving indexes
Resetting sequences

s\tutorials\four_table>

Figure 284: Pull changed XE "changed" data from Heroku XE "Heroku" .com XE "Heroku.com" to XE "to" your local app

Pretty slick! I now have 24 records on the local version--including my precious recipe for crab cakes.

CHAPTER 6 – DATABASE TUTORIALS

MySQL" Tutorial 26 – Using MySQL with Hobo XE "Hobo"

Oracle" Tutorial 27 – Using Oracle with Hobo
 XE "Hobo"
Tutorial 26 – Using MySQL XE "MySQL" with Hobo XE "Hobo"
So far in the book we have taken a database agnostic approach to XE "to" the tutorials. One of the most powerful features of Hobo XE "Hobo" and Rails using the Active Record Object Relational Mapping (ORM) capability is XE "is" that you can usually ignore the back-end issue and focus on solving the business problem.

However, when you are in an environment where the database engine choice has been made for you, or when you need to XE "to" access legacy data as one part or your software solution, you need to learn how to configure Hobo XE "Hobo" for other databases.

Step 1: Download and install MySQL XE "MySQL" .

For Mac OS X user, please see the following URL:

http://dev.mysql.com/doc/mysql-macosx-excerpt/5.0/en/mac-os-x-installation.html
 For Linux users:

http://dev.mysql.com/doc/refman/5.0/en/linux-rpm.html
For Windows users the following detailed instructions are provided:

Go to XE "to" the appropriate URL at dev.mysql.com and download the Windows MSI installer:

[image: image283.png]1/ Downloads.

Fle Edt View Favortes Took Help

w0 KA

ez |) it jdev.mysal comidownloadsimysals 1 himb#wind2

Acquire Now!

o Kikfire.com

~TBM T {TAR packages)

+ Source

Windows downloads (platform notes)

Windows Essentials (x86) ~ 5.1.32 35.4M Download | Pick a mirror
MDS: £018ed175d70ee7eda52151a06£3f5e6 | Signature

Windows MSI Installer (x86) 5.1.32 107.4M Download | Pick & mirror
MDS: ca3a38144defa54224414£5871c9f2a6 | Signature

Without installer (unzip in

o 5132 115.6M Download | Pick & mirror

MDS: 77b424echBZe733c25ad46e£b7a09294 | Signature

Windows x64 downloads (platform notes)

Windows Essentials
51.32 28.0M Download | Pick a mirror
(AMDE4 / Intel EME4T)

MDS: al7757768dEc2062a2bdd5Be663belTe | Signature

Windows MSI Installer
5.1.32 100.4M Download | Pick & mirror
(AMDE4 / Intel EME4T)

MDS: c2b90adedEb3bfealiblb6dlec3g949e | Signature

Without installer (AMDE4 /

5132 118.8M Download | Pick & mirror
Intel EM64T)

® Internet

[£3

Double-click on the MySQL XE "MySQL" MSI installation file:

[image: image284.png]Edt Vew Favores Tools

Help

O - © - (] Do [rots

s [B s

File and Folder Tasks

Other Places

e Local Disk (C:)
) My Documerts
My Computer
&y etk Places

Details

MySQL
File Folder

Date Modied: Wednesday,
Algust 13, 2008, 5:02 PM

s
Bysars.1 a2z

see | Type
109,980 KB Windows Installe P.

Date Modfied
3(24/2009 10:00 AM

Choose the “Typical” option when prompted:

[image: image285.png]1% MySOL Server 5.1, - Setup Wizard

Setup Type
Choose the setup typs that best suts your needs.

Please select a setup type,

©Typical

Common program features willbe nstalld. Recommended for

N E generaluse,

O Complete

All program features wilbe nstalld. (Requires the mast dsk.
space.)

Choose which progra features you want instaled and where they.

o R e

Figure 287: Choose the installation type

The MySQL XE "MySQL" Setup Wizard will take a few minutes to XE "to" install all components:

[image: image286.png]= MySQL
Mo Et Vew Favortes Took Heb 17

O - © - (] Do [rots

: acess [\softmereipysaL 5.4

T e See Type Date Modfied
File and Folder Tasks ¥ 5 mysab5.1.32-win3z.msi 109,980KB Windows Installer P... 3/24/2009 10:00 AM

Other Places 5
18 MySOL Server;5.1,- Setup Wizard

& software
) My Documerts
My Computer
&y etk Places

Installing MySQL Server 5.1

The program features you selected are being installd.

Please walt whil the Setup Wizard nstall MySQL Server 5.1, This may take
Several minutes,

Details status:

mysql-5.1.32-win32.msi copyig e i)
indows Instalr Package. ®)

Figure 288: MySQL XE "MySQL" Server Setup Wizard

[image: image287.png]Fle Edt View Favortes Took Help

Qo - © - (] Do i ros |-

e [0 tweree 5.1

©)

File and Folder Tasks

Other Places

& software
) My Documerts
My Computer
&y etk Places

Details

MySOL 5.1
File Folder

s
Bysars.1 a2z

see | Type

109,980 KB Windows Installe P.

Date Modfied
3(24/2009 10:00 AM

i MySOL S

wizard Completed

Setup has iished nstaling MySQL Server 5.1. Cick Fnish to
extt the wizard,

Configure the MySQL Server now
Use this option to generate an optirized MySQL config
i, setup a Windows service running on a dedicated port
and to set the password for the root account,

<Back. Cancel

The next step is XE "is" to XE "to" configure the database instance:

We recommend choosing the “Standard Configuration” option.

[image: image288.png]MySOL Server,Instance Configuration Wizard
MySQL Server Instance Configuration
Configure the MySQL Server 5.1 server nstance,

Please select a configuration type.

€ Detailed Configuration

B9 Chioose this configuration type to creat the optimal server setup for
this machine.

 Btandard Configuration]

", Lse this oy an machines that da not abeady have a MySQL. server
> D3 instaliation. This wil use a general purpose configuration o the.
Server that can be tuned manualy

<ok e

Figure 290: Choose Standard Configuration

Select both “Install As Windows Service” and “Include Bin Directory in Windows PATH”:

[image: image289.png]MySOL Server,Instance Configuration Wizard
MySQL Server Instance Configuration
Configure the MySQL Server 5.1 server nstance,

Please set the Windows options.

¥ Install As Windows Service

This i the recommended way to runthe MySQL server
on Windows,

Service Name: [ySQL

¥ Launch the HysQL Server automaticaly

¥ finclude Bin Directory in Windows PATH

Check tis aption ta nclude the drectory cortaining the
B server | cent executables n the Windows PATH varizble
50 they can be calle from the command ine.

<ok e

Figure 291: Install as Windows Service

A progress window similar to XE "to" the following will appear next. Press “Finish” to complete the installation.

Now you can launch MySQL XE "MySQL" from the command prompt as follows:

[image: image290.png]\WINDOWS\system32\CMD.exe - mysq! -h localhost -u root -p -

\HoboApps\one_table>nysql ~h localhost —u root —p
Enter password: secee

Jelcone to the MySQL monitor. Commands end with 3 or \g.
Your MySQL connection id is 25

Server version: 5.1.32-community MySQL Community Server (GPL)

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.
nysql>

Figure 292: Launch MySQL XE "MySQL" from the command prompt

MySQL XE "MySQL" will prompt you for the password you entered during installation.

Now create the database you will need for the “one_table” tutorial:

[image: image291.png]\WINDOWS\system 32\CMD.exe - mysql -h localhost -u root -p

\HoboAppsmysql ~h localhost -u root —p
Enter passuord: e

Jelcone to the MySQL monitor. Commands end with 3 or \g.
Your MySOL connection id is 19

Server version: 5.1.32-community MySQL Community Server (GPL)

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

nysql> create database one_table_development;
Query OK, 1 row affected (B.83 sec)

Figure 293: Create XE "Create" the database from the command line

Now you can create the Hobo XE "Hobo" app with the option to XE "to" use MySQL XE "MySQL" instead of the default SQLite database:

c:\tutorials> hobo –d mysql one_table

[image: image292.png]' \WINDOWS\system32\CMD. exe A=

\HobofippsShobo —d mysql one_table

enerating Rails app.--
create
create app/controllers
create app/helpers
create app/models
create app/views/layouts
create config/environments
create config/initializers
create config/locales
create db
create doc
create 1ib
create lib/tasks
create log
create public/images
create public/javascripts
create public/Stylesheets
| create script/performance

|l

create script/process
create test/fixtures
create test/Functional

Figure 294: Console output from the Hobo XE "Hobo" command

Now edit the database.yml XE "database.yml" file to XE "to" see what it looks like:

Notice it is XE "is" pre-filled with the proper parameter structure for MySQL XE "MySQL" . You just need to XE "to" fill in the blanks, particularly the database password:

[image: image293.png]2/ PSPad - [c:\hoboapps\one_table\config\database.ymi]
[Fie Projects Edt Search View Fomnat Tods Scripts HTHL Seftings Window Hel

—Ex
|Pee - eE|C-c-F-@lk [,5pon Be)ev|tmn x|
|EOEm i« @IG|HR B @
[
@ | [# HyBL. Versioms 4.1 and 5.0 are recommended- 3
#
° # Install the MySQL drive:
=l # gem install mysgl
on Hac 05 %5
o || # sudo gem install mysq - —-vith-myeqi-diz-/use/ local/mysal
o | #onmas o5 ¥ Lespara
T | # evie em ancupLaGa-r-aren 1006" sem snstalt myesl -~ --vithonysai-contio~/uex/ Lacal/myaul/nin/mssal_cont
¥ This sets the ARCHFLAGS enviromvent varishle to your mative srchitecture
¥ | # on vindove:
. # gem install mysgl
¥ Chose the winsz build.
o Tnstall HySCL and put its /hin directory on your pach.
enN #
1 % and ve sure co use nev-style passvord hashing:
¥ hutp://dev.mysql.com/ doc efman/S.0/en/old-client homl

development:
sdapter: mysql
encoding: utfs
database: one_table_development
pesl: 5
username: root
Cpasswrd:

host: localhost

Varning: The database defined as "test” will be erased and
re-generated from your development datsbase when you run "rake”.
Do mot set this db to the same as development or production.

tes
adapters mysal
encodina: utfs L/
] | &

Once this is XE "is" completed, run a Hobo XE "Hobo" migration XE "migration" :

Figure 295: Console output from the Hobo XE "Hobo" migration XE "migration"
Now log back into the MySQL XE "MySQL" command line to XE "to" review what was created by the migration XE "migration" :

[image: image294.png]C:\WINDOWS\system32\CMD.exe - mysql -h localhost -u root -p -=

Enter passuor
jelcone to the MySQL monitor. Commands end with 3 or \g.
our MySQL connection id is 27
erver version: 5.1.32-community MySQL Community Server (GPL)

Type *helps’ or *\h’ for help. Type ’\c’ to clear the huffer
mysql> use one_table_development

atabase changed

mysql> show tables;

n_one_table_development

schena_nigrations

rous in set <8.08 sec)
mysql> describe users:

Field

id
crypted passvord

salt

remenber_token
remember_token_expires_at

intc11)
varchar¢48)
varchar¢48)
varchar<255>
datetine
varchar¢258)
varchar¢255>
tinyint<d>
datetine

adninistrator
created at

updated_at datetine
state varchar(258> active
key_tinestanp datetine NULL

42 rous in set <8.80 sec>

mysql>

: \HoboAipps\one_table>nysql ~h localhost -u root —p i

Figure 296: Review the table created in MySQL XE "MySQL"
Tutorial 27 – Using Oracle XE "Oracle" with Hobo XE "Hobo"
In this recipe we will provide instructions for these two options XE "options" :

1. Use and existing Oracle XE "Oracle" database schema XE "database schema" .

2. Download and install a fresh Oracle XE "Oracle" database and create a schema for use with Hobo XE "Hobo" .

For either of these options XE "options" you will first need to XE "to" install the following two ruby gems XE "gems" :

C:\ruby> gem install ruby-oci8 –v 1.0.4

C:\ruby> gem install activerecord-oracle-adapter

[image: image295.png]Command Prompt

:\tutorials>gem install ruby-ocis
Successfully installed ruby-oci8-2.0.3-xB6-mswin32-60

1 gem_installed

Tnstalling ri documentation for ruby-ociB=2.0.3-xB6-mswin32-60
Tnstalling RDoc doctmentation for ruby-ociB-2.0.3-xB6-mswin3Z-60.

lC:\tutorials>gem install activerecord-oracle_enhanced-adapter

Successfully installed activerecord-oracle_enhanced-adapter-1.2.2
1 gem installed

Tnstalling ri documentation for activerecord-oracle_enhanced-adapter=1.2.2
Tnstalling RDoc documentation for activerecord-oracTe_enhanced-adapter-1.2.2.

C:\tutorialss

Figure 297: Console output after installing Oracle XE "Oracle" gems XE "gems" for Ruby and Rails

Option 1

This is XE "is" the typical scenario in a development shop that is already using Oracle XE "Oracle" and you have the Oracle client software already configured for other tools such as SQL Plus, Toad, or SQL Developer.

You probably have different database “instances” for development, test, and production systems. If you are lucky you might even have rights to XE "to" create a new database user (i.e., schema) in your development environment. In most large shops you will probably need to request that the database administrator (DBA) create one for you.

(Note: the terms “user” and “schema” really are referring to XE "to" the same thing and are often used interchangeably by experienced Oracle XE "Oracle" developers. There is XE "is" a long history to this that will confuse users of other database engines where users and schemas are not equivalent.)

As you learned in earlier tutorials, the database.yml XE "database.yml" file is XE "is" the place to XE "to" configure your database connections. Creating a new application using the hobo command with the “d” switch allows you to stipulate which database you will be using, and allows Hobo XE "Hobo" and Rails to build a database.yml template tallored to your database.

C:\tutorials> hobo two_table –d oracle

This is XE "is" what the database.yml XE "database.yml" file looks like without modification:

[image: image296.png]database.yml - SciTE
Fle Edt Search View Toos Options Language Buffers

Help

Fle Edt View Favartes Taok
‘Ldatabase.yml

1 |t Oraclesoct 81,9, 10g

2w

3 # Roguires Ruby/OCTS

4 # hitps//rubyforge ora/projects/ ruby-ocit/
5w
6

7

8

o

File and Folder Tasks

4 Specify your datebase using any valid comnection sytax, such as @
tnsnanes.ora service nare, or a SQL comeet url string of the form
#

{/hosti[port][/service nome]

) Rename tis e
5 Move tis e
) copy tisfie
@ Fubish this il o the Web

0 s
(= sl 11 # By default prefetch_rows (OCI_ATTR_PREFETCH_ROWS) is set o 100, And
X Delete this file 12 # until true bind variables are supported, cursor_sharing is set by default
13 4 to 'similar’, Both can be changed in the canfigation below the defaults
Other Places 14 are cquivalent fo specifying
5 s
£ two_table 16 # prefetch_rows: 100
) My Documerts 17 | # cursor_sharing: sinilar
=) S 8 %
9 My Computer © ol
&3ty Network Places g - dovelopment:
21 adapter: oracle
22 database: two_table_development
23 username: two_table
24 password:
25

26 | # Warning: The datcbase defined as *fest" will be erased and
37 | 4 re-generated from your development database when you run "roke".

Figure 299: The generated database.yml XE "database.yml" file for Oracle XE "Oracle"
When we used SQLite as the default database, Hobo XE "Hobo" and Rails automatically created a database called “two_table_development”. When you use an existing Oracle XE "Oracle" database, you will need to XE "to" enter that database name XE "name" instead of “two_table_development” and use “two_table_development” as the user name the username. Therefore the entries in the database.yml XE "database.yml" file will look more like the following:

development:

adapter: oracle

database: our_development_server_name XE "name"
username: two_table_development

password: hobo

Once you update XE "update" the database.yml XE "database.yml" file and save it you can then run your hobo migration XE "migration" and the complete tutorials as you before. This time they will run using Oracle XE "Oracle" as the back end. That is XE "is" all there is to XE "to" it.

Option 2

In this part of the tutorial we will walk you through the steps of downloading, installing, and configuring Oracle XE "Oracle" 10g XE (Express Edition), which is XE "is" a fully functional version of Oracle with no licensing requirements. It comes with administration tools, a web front end. Register for a free membership in the Oracle Technology Network (OTN) and then go to XE "to" the following URL to download Oracle Database 10g Release 2 Express Edition for Windows:

http://www.oracle.com/technology/software/products/database/xe/htdocs/102xewinsoft.html
[image: image297.png]Oracle Database 10g Express Edition Downloads for, Microsoft Windows - Mozilla Firefox.

Ele Edt View Hstory Bookmarks Ioos Help

6 N % (L] repiiomaw.oracecomitechnlogyissfiwerejprochetsjdatabasejxefidocsf1 17~

8] Most visited 0 Getting Started 51 Latest Headlines

- wrioad orae ve 119 /)

5 Additional pluins re requied to dislay al the mediaon tis page.

[TECHNOLOGY NETWORK

securs sarch | [Techneleay etwark v\ a
PRODUCTS GETTING STARTED DOWNLOADS DOCUMEITATION FORUMS ARTICLES SAMPLE CO
Datobase
Dattse | it View (] Emall s page
Deveiape Toos Oracle Database 10g Release 2 (10.2.0.1)
e Mnagenert Express Edition for Microsoft Windows
Aplcatons Technobgy
Proucts A2 F
Vou must accent the OTH License Aareement for Oracle Database Express Editon fo downloa this sofware.
TECHNOLOGIES i o
o D Accent License Agreement | O Decline License Agreement
Enbeaea
sova
Lz Oracle Database 104 Express Ediion Western European)
il & OracleXE.exe (165332312 bytes)
. Single-byle LATINT database for Western European language siorage, wil he Database Homepage user n
in Engiich onl.
Technelgies A.Z
ARCHITECTURE Oracte Database 10g Express Edition (Universal)
Enerrise 20 S OracleXEUniv.exe (216,833,372 btes)

Grid

o e crinted vchtecture Mult-byte Unicade database for all language deployment, with the Database Homepage user interface availa

Servie 0 the following languages: Braziian Portuguese, Chinese (Simplified and Traditiona, English, French, Germal
< | >
Dare

Figure 300: Oracle XE "Oracle" database install download site

[image: image298.png]Oracle Database 10g Express Edition Downloads for Microsoft Windows - Mozilla Firefox

]

Ele Edt View Hstory Bookmarks Ioos Help

o N % (L] repiiomaw.oracecomitechnlogyissfiwerejprochetsjdatabasejxefidocsf1 17~

- wrioad orae ve 119 /)

[Most visited 0 Getting Started 51 Latest Headlines

€] Oracke Database 10g Express Edi.. £3 | | | Crste anew sccount B

8 AdStonai g o reqire o sy ol he modi s pge. B

Oracle Websites ~

ORACLE' | ign Oub
e . Opening OracleXE.cxe
TECHNOLOGY RETWORK rechnoigy etwork [
P —
PRODUCTS] oraclexene FoRrUMs ARTICLES _ SAMPLE CO
Deabase whichs a5 inary Fie 1
it view | (] & mal s pege

Hidoviare from: efonrioad rade.com

Deveiper T i

D o et Woukd you ket sav ths i

Jiihetclicaini

e)

TECHNOLOGES

518 Dt arehousng

e

sova Thanicyou or acceping he TN License Agreement;you ay naw dawnlaa s sofware.

e Oracle Database 10g Express ilfion (Western Exropean)

il s (165,332,312 bytes)

o Single-tyte LATINT dafahase for Westem European fanguage strage, wih the Datatiase Hamepage user in

ecuty in Engiish anly.

Technabges .2 a

< & >

Dore

Figure 301: Running the Oracle XE "Oracle" XE XE "Oracle XE" installation

[image: image299.png]Fle Edt View Favortes Took Help

O - © - (] Do [rots

Oracle Database 10g Express Edition - Install Wizard

Specily Database Passwords
File and Folder Task

) Rename tis e
P e e T e S e
D) Copy thisie the SYSTEM database accounts

@ Fubish this fleto
) Emaithisfle

I —
OtherPlaces 1 «

P —— Note: You shauid use the SYSTEM user along with the password you ente here o log nt the
) My Documents Database Home Page alter the instal s complee.

& shared Document
iy Computer

& wy etk plced "1

Details

Figure 302: Specifying the database passwords

[image: image300.png]Fle Edt View Favortes

File and Folder Task

29 ke a new older]

@ Fubleh s Folder
e

7 shr tis okdr

Other Places

e Local Disk (C:)
) My Documerts
& shared Document:
My Computer
& vy etk Plce:

Details

Tools Help

O - © - (] Do [rots

Oracle Database 10g Express Edition - Install Wizard

ORACLE’

DATABASE
EXPRESS EDITION

InstaliShield Wizard Complete

Setup hasfirished instllng Oracle Database 10g Express
Ediion on your compute.

¥ Launch the Database hamepage.

Figure 303: Launch the Database home page

[image: image301.png]C' 0 G L] hipi127.0.0.1:8080/apex]f7p=4550:11:671976140432729::NO:

] Most visited ¥ Getting Started (5. Latest Headines.

) Application Express Login

B

ORACLE' Database Express Edition ’

Database Login

Enter your database username and password

Us

name|sys

Password|s

Click here to ssrm hovwto gst started

Login

K&W“\"\

Figure 304: Log is XE "is" as SYS to XE "to" configure your database

[image: image302.png]Create Database User - Mozilla Firefox

Ele Edt Vew Hstory Bookmarks Ioos Help

6 - v (1) Nitgu127.0.0.1:8080]apoip=4500:261 11630888 1888331357:0:261 1

Most visited ¥ Getting Started (5. Latest Headines

) create Database User
ORACLE' Database Express Edition

User svs

Home > Adm

istration > Manage Database Users > Create Database User

eate Database User

* Username two_table_development

* Password|eees

* Confirm Password|eees

Expire Password (]
Account Status| Unlocked v

Default Tablespace: USERS
Temporary Tablespace: TEMP

User Privileges.

Roles:
CONNECT

REsOURCE [IpBa

Direct Grant Syster Privileges:

I CREATE DATABASE LINK (] CREATE MATERIALIZED VIEW [] CREATE PROCEDURE
[IcREATE PUBLIC SYNONYM [] CREATE ROLE I CREATE SEQUENCE
"] CREATE SYNONYM '] CREATE TARILE '] CREATE TRIGGFR.

Dore

Figure 305: Creating a schema/user to XE "to" use with Hobo XE "Hobo"

[image: image303.png]Fle Edt View Favortes Toos Help

O - © - (] Do [rots

adress |29 C:loraclexelpploracielproduct 10.2.Olserver NETWORKIADMIN

File and Folder Tasks

) Rename tis e
5 Move tis e sanet

SunFie
D oy thisfie T

bl s
Qe Bl tnsnames - WordPad
Tl Edt Vow Iert Foma: Hob

listener
CRAFie
Ike

tnsnames
ORA il
ike

DEH SR # /o0 B

=

(DESCRIPTION

Other Places

& METWORK (ADDRESS = [PROTOCOL = TCP) {HOST

) My Docuren] (COMNECT DATA =

(SERVER = DEDICATED)
& sraredDoar (SERVICE_NANE = XE)
2 My Computer] s !

9wtk)

EXTPROC_CONNECTION DATA =
(DESCRIPTTON
(ADDRESS_LTST
(4DDRESS

(prOTOCOL
)
(COMNECT_DATA =

(STD - PLSExtProc)

= ADMIN

TPC) (KEY

ovendall13sh] (PORT

EXTPROC_FOR_XE])

IF3

Figure 306: The tnsnames.ora XE "tnsnames.ora" file created during installation
Note that you will be using the “XE” instance unless you change the name XE "name" .

C:\tutorials> hobo two_table –d oracle

[image: image304.png]Command Prompt

:\tutorials\two_tahle>ruby script/generate hobo_migration

~ Up Migration -
lcreate_table :users do €|
sstring serypted passvord, it = 40
sa

.string istate, :default => "active"

\datetime :key_timestanp

t
tstring T, Timit = 40

tistring :remember_token

t.datetime :rememher_token_expires_at
fistring :iname

fistring :iemajl_address

t.boolean :administrator, :default => false
t.datetime :created_at

t.datetime :updated_at

t

b

d

LMD Dev.apn

|]

~ Down Migration -
drop_tahle :users

hat now: [glenerate migration, generate and [m]igrate now or [clancal? m

igration filenane:
(you can type spaces jnstead of '_
F{Taname [hobo-pioration 11:
create db/migrate
create db/migrate/20090308193448_hobo_migration_l.rh
(in C:/tutorials/two_tahle)

— every Tittle helps)

HoboMigrationl: migrating
creata fabTectusers)

> 0.0780s

=> 0 rows

HoboMigrationl: migrated (0.0780s)

Command P

Figure 307: Generate a Migration after connecting to XE "to" Oracle XE "Oracle"
[image: image305.png]Application Express Login - Mozilla Firefox

Ele Edt View Hstory Bookmarks Ioos Help

- C X @ (O] repinzon. ety

8] Most visited 4 Getting Started 51 Latest Headlines

15501 11:118549425865147: MO

ORACLE' Database Express Edition
Database Login
Username two_table_development © o e EIET

Dore

Figure 308: Log into Oracle XE "Oracle" to XE "to" view the created table
[image: image306.png]Oracle - Mozilla Firefox

Ele Edt Uew Htory Bookmarks Ioos Help

OB ¢ % & (O wwizoo s

B Most Visted 4 Getting Started [Latest Headlines

00:1000:1599908462445637

7 Do you want Frefox t remember this password?

ORACLE' Database Express Edition

User: TWO_TABLE_DEVELOPMENT

fome Custonize

[
" License Agreement
Y M AN Y Geting Started

Leam more
Dacurmentation
Forum Registration
Discussion Forum
Product Page

Storae: 6EOME
0% 0% 100%

Administration Object Browser
v

Application Builder

soL Utilties.

0000000

Mernory: 315MB
0% 0% 100%

tp:/]127.0.0.1:8080/3pex/f7p=4500; 0D 1539908462445637 :NO:]

Figure 309: Access the Oracle XE "Oracle" Object Browser XE "Oracle Object Browser"

[image: image307.png]Ele Edt View Hstory Bookmarks Ioos Help

6 N G ()| hepiri27.0.0.1:0080japet

8] Most visited 0 Getting Started 51 Latest Headlines

ORACLE' Database Express Edition Qa o 7%

15001001 1599908462445637: O

ame: Fullzcreen
nput: creen

Home > Object Browser [Output: None Selected|
e Cap

users
P —

‘SCHEMA_MGRATIONS

User: TWO_TABLE_DEVELOPMENT

Add Column | [Modity Column | [Rename Column | [Brop Column| [Rename| |Copy| [brop| [Truncate | Create Lookup Table
Column lame DataType Nullable Default Primary Key
) NOMBER(ED) o = 1
CRYPTED_PASSWORD VARCHARZ(40) Yes - .
saLT VARCHARZ(40) Yes - .
REMEMBER_TOKEN VARCHAR2(255) Yes - .
REMENBER_TOKEN_EXPIRES_AT DATE Yes - .
HAVE VARCHAR2(255) Yes - .
EMAL_ADDRESS VARCHAR2(255) Yes - .
ADMMNISTRATOR NOMBER(1) Yes o .
CREATED_AT DATE Yes - .
UPDATED_AT DATE Yes - .
state VARCHAR2(255) Yes ‘active’ .
KEY_TMESTANP DATE Yes - .
112
Applcation Express 2100030
Canguage: s Copyight’ 1959, 2000, Orace. Al ight rezervad

hitp3/127.0.0.1:8080) opex] p=4500:1000:1599908462445637

Figure 310: Review the User table from within Oracle XE "Oracle"

[image: image308.png]Ele Edt View Hstory Bookmarks Ioos Help

O ¢ % o (O mmmoosmoer

8] Most visited 0 Getting Started (1 Latest Headlines

ORACLE' Database Express Edition Q o 7?7

15001001 1599908462445637: O

User: TWO_TABLE_DEVELOPMENT

Home > Object Browser

users
2
[IR | 1o oata dexes Motel constraints cramts s

istics UlDefaults Triggers Dependencies SOL

‘SCHEMA_MGRATIONS
UsERS|

Al e

eate| [Drop

Indexllame 4 Uniqueness Columns Status Index Type Temporary Partitioned Function Status Join Ind
SVS ComesE UNIGUE D VALD NORMAL N o

- o

Figure 311: Review the Indexes XE "Indexes" view for Users

[image: image309.png]Object Browser

Mozilla

Ele Edt View Hstory Bookmarks Ioos Help

o + € 0 G [[repir127.0.0.1:8080 apexiFp=4500:10011599908462445637::N0:

3] Most visied ¥ Getting Started

Latest Headines

ORACLE' Database Express #Hitfga

|Cutput: None Selected|
[ode: mage Capture

User: TWO_TABLE_DEVELOPMENT

Q o ?°*
dome Logout el

Home > Object Browser

USERS

=
[P ® | o oma miexes woe

Constraints Grants St

istics UlDefaults Triggers Dependencies SOL

Create v

‘SCHEMA_MGRATIONS

| [create] [prop
UsERS|

Enable | Disable

Constraint Type Table Search Condition Delete Rule Status Last Change Index Invalid
svs_comess USERS D" ISNOT NULL. = ENABLED 05.MAR09 = -
svs_cosse P UsERs - - ENABLED 0B-MAR-09 svs_consese -

i-a

Figure 312: Review the Constraints XE "Constraints" view for User

Tutorial 28 – Using Hobo Index Generation XE "Hobo Index Generation"
By Matt Jones

Defining effective indexes on your data can give massive database performance benefits in any application. To further this goal, Hobo’s migration XE "migration" generator attempts to XE "to" provide useful indices without any additional code, and provides shorthand for defining indices.

The :index Option

Throughout the index generator API, the :index parameter is XE "is" used to XE "to" switch indexing on/off and specify an explicit name XE "name" for an index. The convention is:

· :index => true will switch on indexing for a field not indexed by default; the name XE "name" used is XE "is" the default name generated by Rails.

· :index => false will switch off automatic indexing for a field.

· :index => ‘name XE "name" ’ will specify a name for the generated index. Note that some databases require that index names be unique across the entire database, not just the individual table.
A Note For Oracle XE "Oracle" Users. Oracle’s 30 character limit XE "limit" for entity names causes problems with the default naming scheme that Rails uses for indices. The Oracle driver for ActiveRecord attempts to XE "to" mitigate this by shortening overlong index names in add_index; unfortunately, this will break the generated down migrations XE "migrations" (which rely on the original index names). The best short-term solution is XE "is" to pass a manual index name XE "name" parameter wherever possible.

Automatic Indexing

The belongs_to XE "belongs_to" associations XE "associations" will automatically declare an index on their foreign key field; polymorphic XE "polymorphic" belongs_to XE "to" will declare a multi-field index on [association_type, foreign_key].

Example:

class SomeModel < ActiveRecord::Base

 hobo_model XE "hobo_model"
 belongs_to XE "belongs_to" :other_model

 belongs_to XE "belongs_to" :another_model, :index => ‘some_random_name XE "name" ’

 belongs_to XE "belongs_to" :fooable, :polymorphic XE "polymorphic" => true

end

Will generate the following in an up migration XE "migration" :

add_index :some_models, :other_model_id

add_index :some_models, :another_model_id, :name XE "name" => ‘some_random_name’

add_index :some_models, [:fooable_type, :fooable_id]

Lifecycle state XE "state" fields will also be automatically indexed, as will the inheritance_column of an STI parent class.

Indexing in the ‘fields do’ block

Within the standard fields block, indexes can be declared as part of a field, just like the :required or :unique options XE "options" . Fields that also have the :unique option will automatically declare a unique index.

Example:

class SomeModel < ActiveRecord::Base

 fields do

 name XE "name" :string, :index => true

 unique_field :string, :unique, :index => ‘foo’

 end

end

Will generate the following in an up migration XE "migration" :

add_index :some_models, :name XE "name"
add_index :some_models, :unique_field, :name XE "name" => ‘foo’, :unique => true

Indexing in the model

More complicated indexes may need to XE "to" be declared outside the fields block. For instance, specific slow-running SQL queries may benefit from a multi-field index. The index method XE "method" provides a simple interface for specifying any type of index on the model.

Example:

class SomeModel < ActiveRecord::Base

 fields do

 last_name XE "name" :string

 first_name XE "name" :string

 end

 index [:last_name XE "name" , :first_name]

end
Will generate the following in an up migration XE "migration" :

add_index :some_models, [:last_name XE "name" , :first_name]

When declaring a multi-field index, the order XE "order" is XE "is" relevant - consult your database’s manual for more detail (for example, section 7.4.3 of the MySQL XE "MySQL" 5.0 Reference).

The index method XE "method" currently supports two options XE "options" :

:name XE "name" - use to XE "to" specify the name of the index. If not given, the Rails default will be used.

:unique - passing :unique => true will specify the creation of a unique index.

Chapter 7 - Hobo XE "Hobo" Under the Hood

Hobo Fundamentals

Some of what we will cover in this chapter can be found in the tutorials earlier in the book. However, in this chapter we will drill more deeply into the infrastructure and philosophy of Hobo XE "Hobo" .
The Hobo XE "Hobo" developers have taken the DRY XE "DRY" (Don’t Repeat Yourself) paradigm to XE "to" a new level by identifying repetitive architectural patterns in data-driven web sites and particularly within Rails applications.

· Rapid implementation of dynamic AJAX interfaces in your application with no extra programming. Switchable themes. Customize and tweak your application structure and layout to XE "to" meet any design goals.
· Powerful mark-up language, DRYML XE "DRYML" , combines rapid development with ultimate design flexibility XE "flexibility" .

The DRY XE "DRY" paradigm is XE "is" all about finding the right level of abstraction for the building blocks of an application in order XE "order" to XE "to" reduce cookie-cutter repetitive programming.

Rails starts with a Model-View-Controller XE "Model-View-Controller" (MVC XE "MVC") architecture built with Ruby code, using the metaprogramming power that Ruby provides.

Hobo XE "Hobo" takes this paradigm further and it does it in two directions. It provides rapid prototyping with modules that provide an integrated user login and permissions system, automated page generation, automated routing, built-in style sheets, and an automated database migration XE "migration" and synchronization system. Hobo also provides a powerful markup language called DRYML XE "DRYML" that provides an almost limitless method XE "method" for building custom tags at ever-higher levels of abstraction.

Sometimes these patterns are at a very high level such as the need for a user login capability and sometimes they are at a lower level such the requirement to XE "to" grab a set of records for display.

The Hobo XE "Hobo" framework philosophy is XE "is" that many of the features of a data-driven site should be able to XE "to" be declared and need no other coding, at least for the first set of iterations.

Let’s take a database query as an example. The developers of Rails realized that many queries had similar structures and therefore there should be no need to XE "to" code complex SQL queries. Rails implements find methods to deal with this challenge. But--in the view template—you still need to write the code to loop through the records when you need to display them.

The Hobo XE "Hobo" view is XE "is" that this is a ubiquitous repetitive pattern that should be addressed. So Hobo lets you just declare that you want to XE "to" display a collection XE "collection" of records in a single command.

As we have mentioned many times before, Hobo XE "Hobo" provides a new language called DRYML XE "DRYML" (Don’t Repeat Yourself Markup Language) to XE "to" develop menus, views, forms, and page navigation. The components of DRYML, as you would expect, are tags. Hobo comes with a library of predefined DRYML tags called the Rapid Tag Library XE "Rapid Tag Library" . This library is XE "is" used to render the default menus, pages, and forms you have used in the tutorials.

Levels of Abstraction

As we discussed above, finding the right level of abstraction in implementing coding constructs is XE "is" the key to XE "to" programming productivity and application maintainability. But anyone who has ever coded knows that programming is a messy business. Sometimes it is just easier to code at a low level of abstraction. This is the dominant way of developing applications today. It is simpler not to create reusable components or snippets because something always seems to need changing. You think you will waste more time fixing your components than just starting over.

The approach that Rails takes, and Hobo XE "Hobo" even more so, is XE "is" to XE "to" have code that lets multiple levels of abstractions coexist in the code. This is potentially the best of both approaches.

Build higher and higher levels of abstraction in your tool set but maintain the ability to XE "to" code at a detail level for development flexibility XE "flexibility" .

Wherever possible, Hobo XE "Hobo" provides additional capabilities over Rails for declaring what you want rather than forcing you to XE "to" write procedural code. It is XE "is" therefore important to understand what is going on procedurally behind the scenes in both Rails and Hobo so you know what to do.

In this chapter we will emphasize which component--model, view or controller--is doing what, and when it is XE "is" doing it. We will also emphasize what the various Hobo XE "Hobo" constructs are doing and how within the architecture of Rails.

We are going to XE "to" go through the Hobo XE "Hobo" approach at a couple of levels but first we will list them and give a brief introduction.

Now we are going to XE "to" approach the major topics at a shallow level first and then circle back and go in deeper after we get a few things out of the way first.

Rails and Hobo XE "Hobo"
Hobo XE "Hobo" is XE "is" a set of Rails plug-in, which means that Hobo adds additional custom code to XE "to" Rails, and coexists with Rails. So, essentially a Hobo application is a Rails application with additional capabilities. However, these additional capabilities are substantial, and can be conceptualized into two categories:

1. Operational (“Run Time”) Enhancements

2. Developer Tool Enhancements

Operational Enhancements. Take a look at the data flow XE "data flow" for a typical operating application built with a Model-View-Controller XE "Model-View-Controller" (MVC XE "MVC") framework:

[image: image310.png]Requests

S
SE RVER

4
Forwards 7
XHTML K
css

JavaScript
Images DISPATCHER
XML
CRUD
s S——
ey Controller N

Responds
Redirects ospon P
Queries

Displays

p
%

Figure 313: Data flow for a typical Application using a MVC XE "MVC" framework

Now let’s look at how Rails and Hobo XE "Hobo" fit into the MVC XE "MVC" framework:

[image: image311.png]Requests

WEBrick
S—. Mongrel
SE RVER Apache

Invokes FasCGI
Forwards Passonger
XHTML or Other GGl processor

css

JavaScript
Images DISPATCHER
XML

CRUD
T —— »
Action View \\\ ion Controller W&l Active Record
Responds
Redirects I ospon

Displays

S

Figure 314: Data flow for a Rails application

[image: image312.png]Requests

WEBrick
[N\ Mongrel
Apache
e 1
css
Javaserot Forwards ; 'meﬁ;sm'
L or Other CGI processor

Hobo LA Hobo Model SRUD.
DRYML (RN e RN
Processor

Active Record

Sends DRYML !f
Hobo Rapid

(Auto-generated pages and forms)

Hobo Permissions

Hobo Lifecycles

Figure 315: Data flow for a Hobo XE "Hobo" application

Here are a few talking points:

· The Hobo XE "Hobo" Model Controller XE "Hobo Model Controller" takes the place of the Action Controller in Rails.

· The Hobo XE "Hobo" Model Controller XE "Hobo Model Controller" has access to XE "to" information from both Hobo Permissions XE "Permissions" and Hobo Lifecycles XE "Hobo Lifecycles"

 XE "Lifecycles" that allow it to decide what should be displayed and for whom.

· Hobo XE "Hobo" Rapid pages are rendered using DRYML XE "DRYML" , which is XE "is" passed to XE "to" the DRYML “processor” that translates more declarative DRYML into standard Rails eRB (embedded Ruby) that is then rendered with Action View in Rails.

A closer look at how the Hobo source code is XE "is" organization is useful:
[image: image313.png]¥ [Fsource
v [hobo
» [hobo
» [hobofieds
» [hobosupport
Rakefle

» Bscrpt

Figure 316: First level look at Hobo source

Note that the first three primary folders under “hobo” represent the three gems XE "gems" installed when you issued the command gem install hobo in Chapter 1.:

hobo

hobofields XE "hobofields"
hobosupport XE "hobosupport"
Let’s list them in order XE "order" of precedence (dependency):

1. hobosupport XE "hobosupport"
2. hobofields XE "hobofields"
3. hobo

Hobosupport. This is XE "is" a set of core ruby extensions used throughout Hobo. For those who are very curious, a snapshot of the core components are included in the screenshot below:
[image: image314.png]®00

| Fsource | x habosupport b | hobo_support | fixes.b | chronic.b | modle.rb | aray. | blankslate.rb | enumerable.t |
'kfg';“b require "activesupport’
:g:x:ﬁl‘fw require "hobo_support’
B canCES txt require "hobo_support/fixes’
vBib require 'hobo_support/blankslate’
v 3 hobo_support require 'hobo_support/methodcal 1’
D arayeb require 'hobo_support/methodphitamine’
= blankslate.rb require 'hobo_support/metaid"
=l enumerable.rb, require 'hobo_support/implies'
v [ixes require 'hobo_support/enunerable’
3 chronic.rb require 'hobo_support/array"
s module.rb require 'hobo_support/hash’
slpprb require 'hobo_support/module’
3 fixes.ro require 'hobo_support/string’
@ hash.rb
=) implies.rb
2l metaid.rb
< methodeall.rb
=) methodphitamine.ro
s module.rb
<l string.rb.
2! hobo_support.rb

Figure 317: Listing of Ruby programs within the Hobosupport folder

 You can go online to XE "to" GitHub XE "GitHub" to see all the detail.
Hobofields. The Hobofields gem requires the Hobosupport gem. Hobofields includes Thes primary sub-folders:

hobo_fields

rails_generators

hobo_migration XE "hobo_migration"

 XE "migration"

ttemplates

hobofield_model

templates

The figure below contains a snapshot of the entire folder hierarchy for the Hobofields gem:

[image: image315.png][hobofeids
2 CranGesxt
< initrb
viBi

[hobo_felds
& email_address.rb.
< enum_string.ro
@ field_declaration_dsl.rb
< field_spec.rb
@ fields_declaration.rb

3! html_string.rb

3) markdown_string.rb

3! migration_generator.cb
5! model_extensions.rb

3! password_string.rb.

3! raw_hum_string.rb,

5! raw_markdown_string.rb,

< sanitize_html.io
=l serialized_object.rb
< textrb
< textile_string.rb
& hobo_fields.rb
& hobofields.rb
2 Ueensex
2 anifest
¥ rails_generators
¥ [hobo_migration
& hobo_migration_generator.rb
¥ tempiates
& migration.rb
¥ [hobofield_model
& hobofield_model_generator.rb
¥ templates
& fures.ymlerb
£ model.rb.erb
testrberd
B usace
£ Rakefile
README xt
> seript

s

 hobo_fieds.b | hobofelds.o |

Blis=s

a

a

require 'hobosuppor

ActiveSuppor

module Hobo

Enpty class to represent the boolean type.

class Boolean; en
end

module HoboFields
VERSION = "0.8.8"
extend self

PLAIN_TYPES = {
:boolean
:date
:datetine
stime
+integer
:decimal
+float
:string

3

ALIAS_TYPES = {

£

d

IR 222 R 2R}

Date,
(defined?(Activesupport
Time,

Integer,

BigDecinal,

Float,

String

Fixnum => "integer",

Bignum => "integer

}

Dependencies.load_paths |= [File.dirname(__FILE_)]

TimeNithZone) ? ActiveSupport::TimeWithZone : Time),

Provide a lookup for these rather than loading them all preemptively

STANDARD_TYPES =
shtml
smarkdown
stextile

1

"HemlString",
"MarkdownString" ,

-nnccuncd — ;
———oneswond =~ Opccwondieioo

Figure 318: Content overview for the Hobofields gem

(It is XE "is" beyond the scope of this book to XE "to" go into all of these programs in detail. Our goal is to give you enough information to use Hobo effectively and provide pointers for Ruby enthusiasts to dig in deeper.)

The big picture is XE "is" :

1. Hobo provides the features necessary to XE "to" develop in a model-centric way

2. Toward that end, the developer declares all of the model related specifications in the model, rather than in migrations XE "migrations" . In Rails you focus on building migrations

3. Hobo provides additional fields and field parameters not in Rails

4. Hobo provides a migration XE "migration" generator that builds and executes the migrations XE "migrations" for you.

5. When you make a change to XE "to" a model (add or delete fields, change associations XE "associations") or add models, the migration XE "migration" generator automatically checks the existing database schema XE "database schema" to determine what needs to be changed XE "changed" , then creates the migration specification.

Let’s look at your options XE "options" for using the hobo_migration XE "hobo_migration"

 XE "migration" command:
	--force-drop
	Don't prompt with 'drop or rename' - just drop everything

	--default-name XE "--default-name"
	Don’t prompt for a migration XE "migration" name XE "name" - just pick one or use the one I provide

	--generate
	Don’t prompt for action XE "action" - generate the migration XE "migration"

	--migrate XE "--migrate"
	Don’t prompt for action XE "action" - generate and migrate

	--skip-timestamps XE "--skip-timestamps"
	Don't add timestamps XE "timestamps" to XE "to" the migration XE "migration" file for this model

	--skip-fixture
	Don't generate a fixture file for this model

Figure 319: Command line options XE "options" for Hobo Migration XE "Hobo Migration" s

Scenario 1. Let’s say you modified a model that removed a column named “comments” and added one called “description”. You don’t want to XE "to" stop to be prompted, and you want to have the migration XE "migration" file to be called “removed-comments”:

ruby script/generate XE "ruby script/generate" hobo_migration XE "hobo_migration"

 XE "migration" –migrate –force-drop –default-name removed-comments

Scenario 2. Let’s say you created a model to XE "to" be used as a code table and you are not interested in using the default “timestamps XE "timestamps" ” (created_at, updated_at) provided by Hobo fields. You don’t want to stop to be prompted, and you want to leave the naming of the migration XE "migration" file to Hobo:

> ruby script/generate XE "ruby script/generate" hobo_migration XE "hobo_migration"

 XE "migration" –migrate –skip-timestamps –default-name
To skip XE "skip" creating a Rails test fixture use the –skip-fixture option. We won’t go into detail here about this one. For more information see:

http://ar.rubyonrails.org/classes/Fixtures.html
Hobo. The “mothership” of all the Hobo gems XE "gems" is XE "is" , of course hobo.
The major folders within the Hobo gem we will review in this chapter are:

dryml_generators

rails_generators

taglibs XE "taglibs"
Note the dependencies listed in this screen shot below of the program hobo.rb:

[image: image316.png]¥ hobo

v [hobo
v bin

CHANGES ixt
v doctest
v [hobo
£ hobo_helper.rdoctest
& lifecycles.rdoctest
£ scopes.rdoctest
¥ [drymi_generators
v Prapid
£ cards.dryml.erb
forms.drymi.erd
£ pages.dryml.erb
@ init.b
Vb
» [acton_iew_extensions
» [active_recor
» [hobo

= LICENSE.txt.
¥ [rails_generators
» [hobo
» [hobo_admin_site
» [hobo_front_controller
» [hobo_model
» [hobo_model_controler
» [hobo_model_resource
» 7 hobo_rapid
> hobo_subsite
» [hobo_user_controller
» [hobo_user_model
£ Rakefile
README
v scrpt
2l destroy
£ generate
v Pagis
£ core.dryml

s

 hobourb.

gem dependencies
require 'hobosupport
require 'hobofields'
(2| begin

require 'will_paginate’
rescue MissingSourceFile

OK, Hobo won't do pagination then
©fend

ActiveSupport: :Dependencies. load_paths |= [File.dirname(__FILE_)]

Hobo can be installed in /vendor/hobo, /vendor/plugins/hobo, vendor/plugins/hobo/hobo, etc.
+:HOBO_ROOT = File.expand_path(File.dirnane(__FILE_) + "/.."

class HoboError < Runtimerror; end
| module Hobo

VERSION = "0.8.10"

class PermissionDeniedError < RuntimeError; end
class Rawls < String; end

enodels = [1

@ class << self

attr_accessor :current_theme
attr_writer :developer_features

@ def developer_features?
©developer_features
o end

Figure 320: Required Hobosupport and Hobofields gems XE "gems" listed in hobo.rb

Let’s review the programs/commands in the order XE "order" that you encounter them in you work. In fact, even before you start coding several of these have been executed when you used the hobo command to XE "to" create your first application shell.

First let’s see what options XE "options" you have with the hobo command:

	--user-model
	Override the default “User” for the User model, or specify “false” if you don’t want one.

	--database <database>
	Specify the database to XE "to" be used: sqlite, mysql, oracle, postgres.

	--rails <version>
	Rails version to XE "to" use.

	--no-rails
	Don’t run ‘rails’.

	--invite-only XE "--invite-only"
	Add features for an invite-only website (admin site, no signup)l

	--db-create
	Run “rake XE "rake" db:create:all” XE "rake db:create:all"

Figure 321: Optional parameters for the Hobo command
You can substitute:

-d for –database
-r for –rails
-n for –no-rails
Let’s execute the following command to XE "to" review what happens:

> hobo test_generators XE "test_generators"
So here is XE "is" the console output from this using Hobo 0.8.10:

Generating Rails app...

 create

 create app/controllers

 create app/helpers

 create app/models

 create app/views/layouts

 create config/environments

 create config/initializers

 create config/locales

 create db

 create doc

 create lib

 create lib/tasks

 create log

 create public/images

 create public/javascripts

 create public/stylesheets XE "stylesheets"
 create script/performance

 create test/fixtures

 create test/functional

 create test/integration

 create test/performance

 create test/unit

 create vendor

 create vendor/plugins

 create tmp/sessions

 create tmp/sockets

 create tmp/cache

 create tmp/pids

 create Rakefile

 create README

 create app/controllers/application_controller.rb

 create app/helpers/application_helper.rb

 create config/database.yml XE "database.yml"
 create config/routes.rb

 create config/locales/en.yml

 create config/initializers/backtrace_silencers.rb

 create config/initializers/inflections.rb

 create config/initializers/mime_types.rb

 create config/initializers/new_rails_defaults.rb

 create config/initializers/session_store.rb

 create config/environment.rb XE "environment.rb"
 create config/boot.rb

 create config/environments/production.rb

 create config/environments/development.rb

 create config/environments/test.rb

 create script/about

 create script/console

 create script/dbconsole

 create script/destroy

 create script/generate

 create script/runner

 create script/server

 create script/plugin

 create script/performance/benchmarker

 create script/performance/profiler

 create test/test_helper.rb

 create test/performance/browsing_test.rb

 create public/404.html

 create public/422.html

 create public/500.html

 create public/index.html

 create public/favicon.ico

 create public/robots.txt

 create public/images/rails.png

 create public/javascripts/prototype.js

 create public/javascripts/effects.js

 create public/javascripts/dragdrop.js

 create public/javascripts/controls XE "controls" .js

 create public/javascripts/application.js

 create doc/README_FOR_APP

 create log/server.log

 create log/production.log

 create log/development.log

 create log/test.log

Initialising Hobo...

--> ruby script/generate XE "ruby script/generate" hobo --add-gem XE "--add-gem" --add-routes XE "--add-routes"
 create app/views/taglibs XE "taglibs"
 create app/views/taglibs XE "taglibs" /themes

 create app/views/taglibs XE "taglibs" /application.dryml XE "application.dryml"
 create public/hobothemes

 exists app/models

 create app/models/guest.rb

 exists public/stylesheets XE "stylesheets"
 identical public/stylesheets XE "stylesheets" /application.css XE "application.css"
 create public/javascripts/dryml-support.js

 create config/initializers/hobo.rb

Installing Hobo Rapid and default theme XE "theme" ...

--> ruby script/generate XE "ruby script/generate" hobo_rapid XE "hobo_rapid" --import-tags XE "--import-tags"

 create public/javascripts/hobo-rapid.js

 create public/javascripts/lowpro.js

 create public/javascripts/IE7.js

 create public/javascripts/ie7-recalc.js

 create public/javascripts/blank.gif

 create public/stylesheets XE "stylesheets" /reset.css

 create public/stylesheets XE "stylesheets" /hobo-rapid.css

 create public/hobothemes/clean/

 create public/hobothemes/clean/stylesheets XE "stylesheets"
 create public/hobothemes/clean/stylesheets XE "stylesheets" /rapid-ui.css

 create public/hobothemes/clean/stylesheets XE "stylesheets" /clean.css

 create public/hobothemes/clean/images

 create public/hobothemes/clean/images/spinner.gif

 create public/hobothemes/clean/images/small_close.png

 create public/hobothemes/clean/images/pencil.png

 create public/hobothemes/clean/images/fieldbg.gif

 create public/hobothemes/clean/images/50-ACD3E6-fff.png

 create public/hobothemes/clean/images/300-ACD3E6-fff.png

 create public/hobothemes/clean/images/30-DBE1E5-FCFEF5.png

 create public/hobothemes/clean/images/30-3E547A-242E42.png

 create public/hobothemes/clean/images/101-3B5F87-ACD3E6.png

 create app/views/taglibs XE "taglibs" /themes/clean/

 create app/views/taglibs XE "taglibs" /themes/clean/clean.dryml

Creating user model and controller...

--> ruby script/generate XE "ruby script/generate" hobo_user_model XE "hobo_user_model" user

 exists app/models/

 exists test/unit/

 exists test/fixtures/

 create app/views/user_mailer

 create app/models/user.rb

 create test/unit/user_test.rb

 create test/fixtures/users.yml

 create app/models/user_mailer.rb

 create app/views/user_mailer/forgot_password.erb XE "erb"
--> ruby script/generate XE "ruby script/generate" hobo_user_controller user

 exists app/controllers/

 exists app/helpers/

 create app/views/users

 exists test/functional/

 create app/controllers/users_controller.rb

 create test/functional/users_controller_test.rb

 create app/helpers/users_helper.rb

Creating standard pages...

--> ruby script/generate XE "ruby script/generate" hobo_front_controller front --delete-index XE "--delete-index" --add-routes XE "--add-routes"

 exists app/controllers/

 exists app/helpers/

 create app/views/front

 exists test/functional/

 create app/controllers/front_controller.rb

 create test/functional/front_controller_test.rb

 create app/helpers/front_helper.rb

 create app/views/front/index.dryml XE "index.dryml"
Let’s focus on the commands executed after the underlying Rails app was generated:
1. Initialising Hobo...
ruby script/generate XE "ruby script/generate" hobo --add-gem XE "--add-gem" --add-routes XE "--add-routes"
2. Installing Hobo Rapid and default theme XE "theme" ...

ruby script/generate XE "ruby script/generate" hobo_rapid XE "hobo_rapid" --import-tags XE "--import-tags"

3. Creating user model and controller...

ruby script/generate XE "ruby script/generate" hobo_user_model XE "hobo_user_model" user

4. Creating standard pages...
ruby script/generate XE "ruby script/generate" hobo_front_controller front --delete-index XE "--delete-index" --add-routes XE "--add-routes"

Step 1: Initializing Hobo. The screen shot below will give you the flavor of what the HoboGenerator class does:

[image: image317.png][hoo_eneratorro

class HoboGenerator < Rails.

def manifest
if options[:add_gem]
add_to_file "config/environnent.rb' ils::Initializer.run do Iconfigl", " config.gem 'hobo'\n"
add_to_file "Rakefile", "require 'tasks/rails'", "\nrequire 'hobo/tasks/rails'"
end

if options[:add_routes]
add_to_file "config/routes.rb”, "ActionController: :Routing: :Routes.draw do Imapl”, "\n Hobo.add_routes(map)\n"
end

record do Il
m.directory .join("app/views/taglibs")
m.directory .join("app/views/taglibs/themes™)
m.template "application.dryml”, File.join("app/views/taglibs/application.dryml")
m.directory -join("public/hobothenes”)

directory -join("app/models")
.file "guest.rb”, .join("app/models/guest .rb")

directory -join("public/stylesheets")
.file "application.css” .join("public/stylesheets/application. css”
.file "dryml-support.js -join("public/javascripts/drynl -support. js*)

.file "initializer.rb", .join("config/initializers/hobo.rb")

[image: image318.png]protected
G def banner

"Usage: #{$0} #{spec.name} [--add-routes] [--add-gen]"
o end

@ def add_options!(opt)
opt.separator '
opt.separator 'Options:"
opt..on("--add-routes”,
"Add Hobo routes to config/routes.rb™) { IvI options[:add_routes] = v }
opt.on("--add-gen"
"Edit environment.rb to require the hobo gem") { Ivl options[:add_gen] = v }

o end

G def add_to_file(filenane, after_line, new_line)
Filename = File.join(RAILS_ROOT, filename)
src = File.read filename
a unless src.include? new_line
src.subl(after_line, after_line + "\n" + new_line)
File.open(filename, 'w') {If| f.write(src) }
end
end

ca

o end

Figure 322: The HoboGenerator class actions XE "actions"
You can see that the following files generated by Rails are updated by Hobo:

config/environment.rb XE "environment.rb"
rakefile

config/routes

[image: image319.png]# Be sure to restart your server when you modify this file

Specifies gem version of Rails to use when vendor/rails is not present
RATLS_GEM_VERSTON = '2.3.2" unless defined? RATLS_GEM_VERSION

Bootstrap the Rails environment, frameworks, and default configuration
require File.join(File.dirnane(__FILE_), 'boot')

Rails::Initializer.run do lconfigl
config.gem 'hobo’

Settings in config/environments/* take precedence over those specified here.
Application configuration should go into files in config/initializers
-~ all .rb files in that directory are automatically loaded.

Add additional load paths for your own custom dirs
config. load_paths += ¥(#{RAILS_ROOT}/extras)

Specify gens that this application depends on and have them installed with rake gems:install
config.gen "bj"

config.gem "hpricot”, :version => '0.6", :source => "http://code.whytheluckystiff.net"

#

#

config.gem "sqlite3-ruby”, :1ib => "sqlite3”
config.gem "aws-s3", :lib => "aws/s3"

Only load the plugins named here, in the order given (default is alphabetical).
:all can be used as a placeholder for all plugins not explicitly named
config.plugins = [:exception_notification, :ssl_requirement, :all]

oo

Skip frameworks you're not going to use. To use Rails without a database,
you must remove the Active Record franework.
config. frameworks -= [:active_record, :active_resource, :action_mailer]

Activate observers that should always be running
config.active_record.observers = :cacher, :garbage_collector, :forun_observer

Set Time.zone default to the specified zone and make Active Record auto-convert to this zone.
Run "rake -D time" for a list of tasks for finding time zone names.
config. time_zone = "UTC'

Figure 323: The line “config.gem ‘hobo’ is XE "is" added in environment.rb XE "environment.rb" by Hobo

[image: image320.png]¢ Add your own tasks in files placed in lib/tasks ending in .rake,
for exanple lib/tasks/capistrano. rake, and they will automatically be available to Rake.

require(File.

join(File.dirname(__FILE_), ‘config’, 'boot'))
require 'rake’

require 'rake/testtask’

require 'rake/rdoctask’

require 'tasks/rails’

require 'hobo/tasks/rails’

Figure 324: The lines added to XE "to" the file “rake XE "rake" ” by Hobo

We won’t go into detail about the record do loop. Suffice it to XE "to" say that this section creates the generator manifest of directories and files used by the generator. See the following link for a more in-depth discussion:

http://api.rubyonrails.org/classes/Rails/Generator/Base.html
Step 2: Installing Hobo Rapid and the default theme XE "theme" .

Here are the options XE "options" for the Hobo Rapid generator

	--import-tags XE "--import-tags"
	Modify taglibs/ XE "taglibs" application.dryml XE "application.dryml" to XE "to" import hobo-rapid and theme XE "theme" tags

	--admin
	Generate an admin sub-site

	--invite-only XE "--invite-only"
	Generate an admin sub-site with features for an invite only app

Note that the –admin and –invite-only parameters are passed by the Hobo command to XE "to" the other generators:

> hobo --invite-only XE "--invite-only" my-invite-only-app

Initialising Hobo...

--> ruby script/generate XE "ruby script/generate" hobo --add-gem XE "--add-gem" --add-routes XE "--add-routes"
Installing Hobo Rapid and default theme XE "theme" ...

--> ruby script/generate XE "ruby script/generate" hobo_rapid XE "hobo_rapid" --import-tags XE "--import-tags" --invite-only XE "--invite-only"
create app/views/taglibs XE "taglibs" /themes/clean/clean.dryml

 dependency hobo_admin_site

Renaming app/views/taglibs XE "taglibs" /application.dryml XE "application.dryml" to XE "to" app/views/taglibs/front_site.dryml

 create app/views/taglibs XE "taglibs" /application.dryml XE "application.dryml"
 create app/controllers/admin

 create app/views/admin

 create app/controllers/admin/admin_site_controller.rb

 create app/views/taglibs XE "taglibs" /admin_site.dryml

 create public/stylesheets XE "stylesheets" /admin.css

 dependency hobo_model XE "hobo_model" _controller XE "hobo_model_controller"
 exists app/controllers/admin

 create app/helpers/admin

 create app/views/admin/users

 create test/functional/admin

 create app/controllers/admin/users_controller.rb

 create test/functional/admin/users_controller_test.rb

 create app/helpers/admin/users_helper.rb

 create app/views/admin/users/index.dryml XE "index.dryml"
Creating user model and controller...

--> ruby script/generate XE "ruby script/generate" hobo_user_model XE "hobo_user_model" user --invite-only XE "--invite-only"
 exists app/models/

 exists test/unit/

 exists test/fixtures/

 create app/views/user_mailer

 create app/models/user.rb

 create test/unit/user_test.rb

 create test/fixtures/users.yml

 create app/models/user_mailer.rb

 create app/views/user_mailer/forgot_password.erb XE "erb"
 create app/views/user_mailer/invite.erb XE "erb"
--> ruby script/generate XE "ruby script/generate" hobo_user_controller user --invite-only XE "--invite-only"
 exists app/controllers/

 exists app/helpers/

 create app/views/users

 exists test/functional/

 create app/controllers/users_controller.rb

 create test/functional/users_controller_test.rb

 create app/helpers/users_helper.rb

 create app/views/users/accept_invitation.dryml

Creating standard pages...

--> ruby script/generate XE "ruby script/generate" hobo_front_controller front --delete-index XE "--delete-index" --add-routes XE "--add-routes" --invite-only XE "--invite-only"
 exists app/controllers/

 exists app/helpers/

 create app/views/front

 exists test/functional/

 create app/controllers/front_controller.rb

 create test/functional/front_controller_test.rb

 create app/helpers/front_helper.rb

 create app/views/front/index.dryml XE "index.dryml"
Invite-only website XE "Invite-only website"
 If you wish to XE "to" prevent all access to the site to non-members, add 'before_filter XE "before_filter" :login_required'

 to XE "to" the relevant controllers, e.g. to prevent all access to the site, add

 include XE "include" Hobo::AuthenticationSupport

 before_filter XE "before_filter" :login_required

 to XE "to" application_controller.rb (note that the include XE "include" statement is XE "is" not required for hobo_controllers)

 NOTE: You might want to XE "to" sign up as the administrator before adding this!

Step 3: Creating the User model and controller.
ruby script/generate XE "ruby script/generate" hobo_user_model XE "hobo_user_model" user
Notice that the parameter after hobo_user_model XE "hobo_user_model" is XE "is" user. This parameter will be passed down from the hobo command if you execute hobo passing it a name XE "name" you would prefer for the model to XE "to" handle users.

> hobo --user-model enterprise_user myapp

..will output to XE "to" the console (we’ll skip XE "skip" the other output that would stay the same):

…

Creating enterprise_user model and controller...

--> ruby script/generate XE "ruby script/generate" hobo_user_model XE "hobo_user_model" enterprise_user

 exists app/models/

 exists test/unit/

 exists test/fixtures/

 create app/views/enterprise_user_mailer

 create app/models/enterprise_user.rb

 create test/unit/enterprise_user_test.rb

 create test/fixtures/enterprise_users.yml

 create app/models/enterprise_user_mailer.rb

 create app/views/enterprise_user_mailer/forgot_password.erb XE "erb"
--> ruby script/generate XE "ruby script/generate" hobo_user_controller enterprise_user

 exists app/controllers/

 exists app/helpers/

 create app/views/enterprise_users

 exists test/functional/

 create app/controllers/enterprise_users_controller.rb
Let’s look at the controller generated:

[image: image321.png]flass EnterpriseUsersController < ApplicationController

hobo_user_controller

auto_actions

11, sexcept => [:index, :new, :create]

Figure 325: Users Controller XE "Users Controller" generated by Hobo
Let’s look at the models:

[image: image322.png]oo 000000000000 demeprsewsew 00000

| class EnterpriseUser < ActiveRecord: :Base
hobo_user_model # Don't put anything above this

o fields do
nane :string, :unique

email_address :email_address, :login = true
adninistrator :boolean, :default = false
timestanps

o end

This gives adnin rights to the first sign-up.

Just remove it if you don’t want that
before_create { luser| user.adninistrator = true if IRails.env. test? 8& count == @ }

#

- Signup 1ifecycle -

& lifecycle do
state :active, :default => true

create :signup, :available_to => "Guest",
sparans => [:name, :email_address, :password, :password_confirmation],
sbecome => :active

G transition :request_password_reset, { :active = :active }, :new_key => true do
Enterpriselsertiailer. deliver_forgot_password(self, lifecycle.key)
o end

transition :reset_password, { :active => :active }, :available_to => :key_holder,
:params => [:password, :password_confirmation]

o end

-~ Permissions -

s

) def create_permitted? v

Figure 326: User model with Lifecycles XE "Lifecycles" generated by Hobo
[image: image323.png]/flass EnterpriseUserailer < ActionMailer: :Base

) def forgot_password(user, key)
host = Hobo:: Control ler. request_host
app_name = Hobo: : Controller.app_nane |1 host
@subject = "#{app_name} -~ forgotten password”

ebody = { :user => user, :key => key, :host => host, :app_name => app_name }
@recipients = user.email_address
efrom = "no-reply@i{host}"

@sent_on = Time.now
eheaders = {}
©| end

©|end

Figure 327: Action Mailer Model generated by Hobo
Notice that we have an “Action Mailer” model created for us as well. This is XE "is" used for forgotten passwords as well as the –invite-only option for creating an application.

Let’s create another app that is XE "is" for invitation only:

>hobo --user-model enterprise_user –invite-only app_by_invite

Now let’s look at the console output that comes after the “Generating Rails App” portion:
Initialising Hobo...

--> ruby script/generate XE "ruby script/generate" hobo --add-gem XE "--add-gem" --add-routes XE "--add-routes"
 create app/views/taglibs XE "taglibs"
 create app/views/taglibs XE "taglibs" /themes

 create app/views/taglibs XE "taglibs" /application.dryml XE "application.dryml"
 create public/hobothemes

 exists app/models

 create app/models/guest.rb

 exists public/stylesheets XE "stylesheets"
 identical public/stylesheets XE "stylesheets" /application.css XE "application.css"
 create public/javascripts/dryml-support.js

 create config/initializers/hobo.rb

Installing Hobo Rapid and default theme XE "theme" ...

--> ruby script/generate XE "ruby script/generate" hobo_rapid XE "hobo_rapid" --import-tags XE "--import-tags" --invite-only XE "--invite-only"
 create public/javascripts/hobo-rapid.js

 create public/javascripts/lowpro.js

 create public/javascripts/IE7.js

 create public/javascripts/ie7-recalc.js

 create public/javascripts/blank.gif

 create public/stylesheets XE "stylesheets" /reset.css

 create public/stylesheets XE "stylesheets" /hobo-rapid.css

 create public/hobothemes/clean/

 create public/hobothemes/clean/stylesheets XE "stylesheets"
 create public/hobothemes/clean/stylesheets XE "stylesheets" /rapid-ui.css

 create public/hobothemes/clean/stylesheets XE "stylesheets" /clean.css

 create public/hobothemes/clean/images

 create public/hobothemes/clean/images/spinner.gif

 create public/hobothemes/clean/images/small_close.png

 create public/hobothemes/clean/images/pencil.png

 create public/hobothemes/clean/images/fieldbg.gif

 create public/hobothemes/clean/images/50-ACD3E6-fff.png

 create public/hobothemes/clean/images/300-ACD3E6-fff.png

 create public/hobothemes/clean/images/30-DBE1E5-FCFEF5.png

 create public/hobothemes/clean/images/30-3E547A-242E42.png

 create public/hobothemes/clean/images/101-3B5F87-ACD3E6.png

 create app/views/taglibs XE "taglibs" /themes/clean/

 create app/views/taglibs XE "taglibs" /themes/clean/clean.dryml

 dependency hobo_admin_site

Renaming app/views/taglibs XE "taglibs" /application.dryml XE "application.dryml" to XE "to" app/views/taglibs/front_site.dryml

 create app/views/taglibs XE "taglibs" /application.dryml XE "application.dryml"
 create app/controllers/admin

 create app/views/admin

 create app/controllers/admin/admin_site_controller.rb

 create app/views/taglibs XE "taglibs" /admin_site.dryml

 create public/stylesheets XE "stylesheets" /admin.css

 dependency hobo_model XE "hobo_model" _controller XE "hobo_model_controller"
 exists app/controllers/admin

 create app/helpers/admin

 create app/views/admin/users

 create test/functional/admin

 create app/controllers/admin/users_controller.rb

 create test/functional/admin/users_controller_test.rb

 create app/helpers/admin/users_helper.rb

 create app/views/admin/users/index.dryml XE "index.dryml"
Creating enterprise_user model and controller...

--> ruby script/generate XE "ruby script/generate" hobo_user_model XE "hobo_user_model" enterprise_user --invite-only XE "--invite-only"
 exists app/models/

 exists test/unit/

 exists test/fixtures/

 create app/views/enterprise_user_mailer

 create app/models/enterprise_user.rb

 create test/unit/enterprise_user_test.rb

 create test/fixtures/enterprise_users.yml

 create app/models/enterprise_user_mailer.rb

 create app/views/enterprise_user_mailer/forgot_password.erb XE "erb"
 create app/views/enterprise_user_mailer/invite.erb XE "erb"
--> ruby script/generate XE "ruby script/generate" hobo_user_controller enterprise_user --invite-only XE "--invite-only"
 exists app/controllers/

 exists app/helpers/

 create app/views/enterprise_users

 exists test/functional/

 create app/controllers/enterprise_users_controller.rb

 create test/functional/enterprise_users_controller_test.rb

 create app/helpers/enterprise_users_helper.rb

 create app/views/enterprise_users/accept_invitation.dryml

Creating standard pages...

--> ruby script/generate XE "ruby script/generate" hobo_front_controller front --delete-index XE "--delete-index" --add-routes XE "--add-routes" --invite-only XE "--invite-only"
 exists app/controllers/

 exists app/helpers/

 create app/views/front

 exists test/functional/

 create app/controllers/front_controller.rb

 create test/functional/front_controller_test.rb

 create app/helpers/front_helper.rb

 create app/views/front/index.dryml XE "index.dryml"
Invite-only website XE "Invite-only website"
 If you wish to XE "to" prevent all access to the site to non-members,
 add 'before_filter XE "before_filter" :login_required' to XE "to" the relevant controllers, e.g. to prevent all access to the site, add

 include XE "include" Hobo::AuthenticationSupport

 before_filter XE "before_filter" :login_required

 to XE "to" application_controller.rb (note that the include XE "include" statement is XE "is" not required for hobo_controllers)

 NOTE: You might want to XE "to" sign up as the administrator before adding this!

Now let’s look at the user model, focusing on the Lifecycle changes for the invitation-only app:

[image: image324.png]e e e =a

800 - enterprise_user.rb

- Signup lifecycle ---
lifecycle do

state :invited, :default = true
state :active
create :invite,
available_to => "acting_user if acting_user.administrator?”,
params = [:name, :email_address],
inew_key = true,
:become => :invited do
Userdailer.deliver_invite(self, lifecycle.key)
end

transition :accept_invitation, { rinvited = :active }, :available_to => :key_holder,
:params => [:password, :password_confirmation]

transition :request_password_reset, { :active = :active }, :new_key = true do
Enterpriselsertiailer. deliver_forgot_password(self, lifecycle.key)
end

transition :reset_password, { :active => :active }, :available_to => :key_holder,
:params => [:password, :password_confirmation]

end

-=- Permissions ---
def create_permitted?
Only the initial adnin user can be created, from there it's invite-only
User.count == 0
end

def update_permi tted?
acting_user.administrator? |1
(acting_user == self 8& only_changed?(:email_address, :crypted_password,
scurrent_password, :password, :password_confirmation))
Note: crypted_password has attr_protected so although it is permitted to change, it cannot be changed)
directly from a form submission. 5

Line: 18 Column: 1 @ Ruby v Soft Tabs: 2 | EnteroriseUser < ActiveRecord--Base B

Figure 328: User model generated for an "--invite-only XE "--invite-only" " Hobo application

And the controller:

[image: image325.png]| fflass EnterpriseUsersController < ApplicationController

hobo_user_controller
auto_actions :all, :except => [:index, :new, :create]

def create
hobo_create do
if valid?
self.current_user = this
this.password = this.password_confirmation = nil # don't trigger password change validations
this.state = 'active’
this.save
flash[:notice] = "You are now the site administrator”
redirect_to home_page
end
end
end

DDD

def do_accept_invitation
do_transition_action :accept_invitation do
self.current_user = this
Flash[:notice] = "You have signed up"
end
end

DD cca

ca

o end

Figure 329: Users Controller XE "Users Controller" generated with an "--invite-only XE "--invite-only" " Hobo application

And even the Action Mailer:

[image: image326.png]1 enterprise_user_mailer.rb

class EnterpriseUserMailer < ActionMailer::

def forgot_password(user, key)
host = Hobo:: Control ler. request_host
app_name = Hobo: : Controller.app_nane |1 host
@subject = "#{app_name} -- forgotten password"

@body = { :user = user, :key = key, :host => host, :app_name => app_name }
erecipients = user.email_address
efron = "no-replye#{host}"
@sent_on = Time.now
eheaders = {}
end

def inviteCuser, key)
host = Hobo:: Controller. request_host
app_name = Hobo: : Controller.app_nane |1 host
FIXME - nasty hack
app_nae. remove! (/ - Admin$/)
Esubject = "Invitation to #{app_name}"

@body = { :user = user, :key = key, :host => host, :app_name => app_name }
erecipients = user.email_address
efron = "no-replye#{host}"
@sent_on = Time.now
eheaders = {}
end

end

Figure 330: Action Mailer model generated with an "--invite-only XE "--invite-only" " Hobo application

Step 4: Creating the standard pages
ruby script/generate XE "ruby script/generate" hobo_front_controller front --delete-index XE "--delete-index" --add-routes XE "--add-routes"

One of nice features Hobo provides is XE "is" a working web site with a home page and tabs for each your models right out of the box.

The hobo_front_controller generator provides this.

Note the parameters that Hobo uses when you first create an application:

--delete-index XE "--delete-index"
--add-routes XE "--add-routes"

The first parameter tells the generator not to XE "to" put in a list of models within the page. The second parameter tells the generator to add routes to the models (e.g,, tabs) when they are created. Let’s look at the console output displayed during the execution of this generator:

Creating standard pages...

--> ruby script/generate XE "ruby script/generate" hobo_front_controller front --delete-index XE "--delete-index" --add-routes XE "--add-routes"

 exists app/controllers/

 exists app/helpers/

 create app/views/front

 exists test/functional/

 create app/controllers/front_controller.rb

 create test/functional/front_controller_test.rb

 create app/helpers/front_helper.rb

 create app/views/front/index.dryml XE "index.dryml"
Looking at the Hobo source code we can see how this works:

[image: image327.png] hobo.ront_contolergeneraor. |

route_src = File.read(routes_path)
return if route_src.include?(route)

head = "ActionController: :Routing: :Routes.draw do Imap|"
route_src.sub!(head, head + "\n\n" + route)
File.open(routes_path, 'w') {Ifl f.writeCroute_src) }
©| end

) def remove_index_html

index_path = File.join(RAILS_ROOT, "public/index.html")
return unless File.exists?(index_path)
File.unlinkCindex_path)

o end

def invite_only?
options[:invite_only]
end

protected
@ def banner

"Usage: #{30} #{spec.name} <controller-name> [--add-routes] [--delete-index] [--invite-only]"
end

©|end

Figure 331: Source code for "hobo_front_controller_generator.rb"

Other Hobo Features

Hobo takes the perspective that the model specification can drive an enormous fraction

of the entire application. With Hobo, once you have a model, you’ve got a basic application. Edit your model, you’ve got a new application.

There are primarily five sets of “declarations” in your model code: fields, field validations, indexes, model associations XE "associations" , and user permissions.

Fields

A big difference between Hobo XE "Hobo" and Rails is XE "is" that in Hobo fields are declared in the model, whereas in Rails they are declared in the migrations XE "migrations" . In our opinion it is more intuitive and DRY XE "DRY" to XE "to" maintain all of the model code in one place, creating or changing the database design by edit the model, letting Hobo build the migration XE "migration" code necessary to make any required changes. You can look in one place to see everything about a model. You don’t need to jump to the schema.rb file.

The hobo_model XE "hobo_model" _resource XE "hobo_model_resource" generator creates models, controllers, and views. Any changes to XE "to" field definitions or associations XE "associations" in the model can be propagated throughout the application with the hobo_migration XE "hobo_migration" generator. There is XE "is" no need to edit the migration XE "migration" file. The hobo_migration generator handles this for you.

If you only want to XE "to" create a model, use the hobo_model XE "hobo_model" generator.

Indexes XE "Indexes"
This is XE "is" one of the newest additions to XE "to" Hobo XE "Hobo" thanks to Matt Jones. This feature provides for automatic field generation for the foreign keys of related models, and an easy-to-use declarative syntax to specified single and multi-part keys with a model definition.

Validations

As we have discussed elsewhere in the book, Hobo XE "Hobo" provides some useful in-line shortcuts for the simplest validations that Rails does not provide. See in red below:

Fields do

 name XE "name" :string, :required, :unique, :length => 32
end

Use standard rails validations outside the fields…do block.

This works the same as in Rails so we will not add anything new at this point.

Views

Views take the most time to XE "to" develop in any application and Hobo XE "Hobo" provides more tools here than in the other two modules to meet that challenge In fact, it provides an entire language to use to develop view templates (a Rails web page).

Hobo XE "Hobo" views are developed entirely differently than in Rails. Once you define your models and controllers, Hobo is XE "is" capable of automatically generating an entire set of views on-the-fly. This means that at the beginning of your development process you do not have to XE "to" code a view template at all. Hobo automatically creates them whenever the user requests that data be rendered.

DRYML XE "DRYML" Tags - Hobo XE "Hobo" constructs view templates using Hobo’s mark-up language, called Don’t Repeat Yourself Markup Language. The tags are reusable components that perform specific processes defined in Ruby.

You build DRYML XE "DRYML" tags using a definition language and you use the tags to XE "to" build data-driven view templates in an XML-like syntax. You can create your own tags and build tags from other tags. Hobo XE "Hobo" comes with its own library of fundamental tags called the Rapid Library.

For those of you with a Rails background, you can think of these as similar to XE "to" Rails "helpers", but they are used with an easier XML XE "XML" syntax rather than with [Ruby embedded in the templates.]

Rapid Tag Library XE "Rapid Tag Library" . This library is XE "is" a set of tags that deal with all aspects of view template specification. It includes tags for links, forms, input controls XE "controls" , navigation, logic and much more. They are DRYML XE "DRYML" tags in that they are defined with the DRYML definition language. Many rapid tags call other Rapid tags implicitly. For example, you may never see a Rapid <input> called explicitly in the auto-generated XE "auto-generated" tags described below.

Rapid Generator. This generator is XE "is" a real time generator as opposed to XE "to" the code generators we usually talk about in Rails development. Rapid creates a set of auto-generated XE "auto-generated" tags that are defined by model fields and model relationships. Rapid uses these auto-generated tags to render individual view templates.

There are three files within the view directory, located at views/taglibs XE "taglibs" /auto/rapid where all the automatically generated tags are created. They are:

pages.dryml XE "pages.dryml"
forms.dryml

cards.dryml XE "cards.dryml"

Tags within pages.dryml XE "pages.dryml" call tags within forms.dryml or cards.dryml XE "cards.dryml" . (Tags are defined in these files, not invoked). The Rapid generator invokes these tags either automatically without additional code or from manually created code in application.dryml XE "application.dryml" .

Auto-generated tags in pages.dryml XE "pages.dryml" . Rapid generates a set of four complex tags for each model:

 <index-page>

 <new-page>

 <show-page>

 <edit-page>

These auto-generated XE "auto-generated" tags are invoked by the corresponding controller action XE "action" (index, new, show or edit) to XE "to" render view templates corresponding to each action.

The other three fundamental actions--create, update XE "update" and destroy--do not have their own Hobo XE "Hobo" page. They appear as links within the four auto-generated XE "auto-generated" tags, some invoked within the Rapid <a> tag (similar to XE "to" the HTML XE "HTML" <a> hyperlink tag), or the <submit XE "submit" > or <delete-button XE "delete-button" > tag. The four tags that are used to render templates plus the three that appear as links or buttons total to the seven actions XE "actions" we repeatedly cite.

Tag definitions for the four basic tags begin like this:

<def tag="index-page" for="Contact">

 ...

There is XE "is" a lot going on in the tag definitions in pages.dryml XE "pages.dryml" that you might not fully understand yet. This includes calls to XE "to" HTML XE "HTML" tags with parameterization syntax (you see params XE "params" declarations), unfamiliar tags like <collection XE "collection" > and so forth.

The figure below summarizes some important information about the four basic tags:

	Tag Name
	Controller Action
	Main Data Tags
	Actions Linked

	<index-page>
	index (list)
	<collection> XE "collection"
	new

	<new-page>
	new
	<form> XE "form"
	create

	<show-page>
	show
	<name XE "name" >,
<field-list> XE "field-list" <collection> XE "collection" (for associated models)
	edit

	<edit-page>
	edit
	<form> XE "form"
	update XE "update"

Figure 332: Hobo XE "Hobo" Rapid action XE "action" related tags

The content XE "content" of the four table columns is XE "is" explained below:

Tag Name: This tag name XE "name" is XE "is" what is the text used to XE "to" invoke the tag within a Hobo XE "Hobo" template or application.dryml XE "application.dryml" (see below).
Controller Action: indicates the action XE "action" that calls the particular tag which is XE "is" rendered as a Hobo XE "Hobo" view template.
Main Data Tags: Indicates the most used sub-tags responsible for data input and output. Other sub-tags handle formatting tasks.
Actions Linked: indicates which actions XE "actions" have tags which link to XE "to" other actions.
Programming note. Linked actions XE "actions" do not appear explicitly as a tag but as attributes XE "attributes" of the <a> tag or implicitly within the <submit XE "submit" > or <delete-button XE "delete-button" > tag.

Each of the four pages tags calls tags in the forms.dryml and cards.dryml XE "cards.dryml" file libraries. The <show-page> and <edit-page> tag explicitly call <form XE "form" > tags within forms.dryml. The <index-page> and <edit-page> tags call the <card XE "card" > tags to XE "to" display lists or individual records but DO NOT do so explicitly.

Programming note. <index-page> and <show-page> call <card XE "card" > tags implicitly through the <collection XE "collection" >, <field-list XE "field-list" > and <name XE "name" > tags. This does not mean, for example that <field-list> only uses <card> tags. It uses its polymorphic XE "polymorphic" capability to XE "to" know what type of page tag it is XE "is" being called from to determine what to do.

Application.dryml file. Like the pages.dryml XE "pages.dryml" file, this is XE "is" also a repository for tag definitions. A tag definition placed here with the same name XE "name" as a tag definition in pages.dryml, forms.dryml or cards.dryml XE "cards.dryml" auto-generated XE "auto-generated" libraries will override the definition in these libraries. Additional definitions may also be placed in this library file and will be available to XE "to" all view templates within the application.

A typical use for this file is XE "is" to XE "to" copy a tag definition from an auto-generated XE "auto-generated" library and then make edits to it in application.dryml XE "application.dryml" .

Programming Note. Application.dryml (as of Hobo XE "Hobo" 0.8.9)is XE "is" the only library that permits tag definitions that are extensions of other tags that you first learned about in the tutorials. It is anticipated that Hobo 1.0 will allow extensions in other dryml files.

View templates. View templates are stored within view directories carrying the plural XE "plural" of the model name XE "name" . Hobo XE "Hobo" view templates have the .dryml extension in contrast to XE "to" the .erb XE "erb" or .rhtml (older) extension of Rails templates. You can of course use these template types since Hobo is XE "is" a Rails application, but you probably will not need to.

View layouts. Rails has a layout file to XE "to" handle markup that is XE "is" common to many templates such as header XE "header" and footer information. Since it is so easy to use DRYML XE "DRYML" tags, you will probably find it unnecessary to use layouts.

Template Processing Order. The diagram below outlines the precedence logic for Hobo XE "Hobo" rendering of templates. One very important issue to XE "to" keep straight is XE "is" the difference between tag definitions and tag usage.

[image: image328]
Figure 333: Hobo XE "Hobo" precedence logic for action XE "action" tags

In pages.dryml XE "pages.dryml" or application.dryml XE "application.dryml" , there are only tag definitions. Hobo XE "Hobo" takes these definitions and creates tags on-the-fly from which it renders templates. You never actually see the tags anywhere in the application. If you have coded your own template (e.g., show.dryml XE "show.dryml") you may have both tag definitions and tag usage within that template file. Remember tag definitions begin with the <def> tag and tag usage invokes the tag by name XE "name" , e.g., <index-page> in the above example.

Hobo Permission System

By Tom Locke

The Hobo Permission System (aka “permissions”) is XE "is" an extension to XE "to" Rails Active Record that allows you to define which actions XE "actions" on your models are permitted by which users.

Hobo XE "Hobo" ’s controllers and DRYML XE "DRYML" tag libraries use this information to XE "to" automatically customize their behavior according to your definitions.

Introduction

One of the core pieces of the Hobo XE "Hobo" puzzle is XE "is" the permission system. The permission system itself lives in the model layer - it is a set of extensions to XE "to" Active Record models. It’s not a particularly complex set of extensions but the overall effect in Hobo is very powerful. This comes not so much from the permission system itself, but from how it is used. Hobo’s controllers use the permission system to decide if a given request is allowed or not. In the view layer, the Rapid tag library uses the permission system to decide what to render for the currently logged in user.

To understand how it all fits together, it’s helpful to XE "to" be clear about this distinction:

The permission system is XE "is" a model level feature, but it is used in both the controller and view layers.

This guide will be mostly about how it all works in the model layer, but we’ll also talk a little about how the controllers and tags use the permissions.

At its heart, the permission system is XE "is" fairly simple, it just provides methods on each model that allow the following four questions to XE "to" be asked:

Is a given user allowed to XE "to" :

· Create XE "Create" this record?

· Update XE "Update" the database with the current changes to XE "to" this record? (Thanks to Active Record’s ability to track changes)

· Destroy the current record?

· View the current record, or an individual attribute XE "attribute" ?.

There is XE "is" also a fifth permission, which is more of a pseudo permission. Can this user:

· Edit a specified attribute XE "attribute" of the record

We call this pseudo permission because it is XE "is" not a request to XE "to" actually do something with the record. It is more like asking: if, at some point in the future, the user tries to update XE "update" this attribute XE "attribute" , will that be allowed? Clearly edit permission is closely related to update permission, but it’s not quite the same. In fact, you often don’t need to declare edit permissions because Hobo XE "Hobo" can figure them out from your update permission. We’ll cover this in more detail later, but for now just be aware that edit permission is a bit of an odd-one-out.

Defining permissions

In a typical Hobo XE "Hobo" app, the place where the permission system is XE "is" most prominent in your own code is your permission declarations. These are methods, which you define on your models, known as “permission methods”. These methods are where you tell the permission system who is allowed to XE "to" do what. The permission methods are called by the framework - it is unusual to call them yourself.

The four basic permission methods

When you generate a new Hobo XE "Hobo" model, you get stubs for the following methods.

· def create_permitted? XE "create_permitted?"
· def update XE "update" _permitted? XE "update_permitted?"
· def destroy_permitted? XE "destroy_permitted?"
· def view_permitted? XE "view_permitted?" (attribute XE "attribute")
The methods must return true or false to XE "to" indicate whether or not the operation is XE "is" allowed. We’ll see some examples in a moment but we first need to look at what information the methods have access to.

acting_user XE "acting_user"
The user performing the action XE "action" is XE "is" available via acting_user XE "acting_user" method XE "method" . This method will always return a user object, even if no one is logged in to XE "to" the app, because Hobo XE "Hobo" has a special Guest class to represent a user that is not logged in. Two useful methods that are available on all Hobo user objects are:

· guest? – returns true if the user is XE "is" a guest, i.e. no-one is logged in.

· signed_up? – returns true if the user is XE "is" a not a guest.

So for example, to XE "to" specify that you must be logged in to create a record:

def create_permitted? XE "create_permitted?"

 acting_user XE "acting_user" .signed_up? XE "acting_user.signed_up?"

end
It’s also common to XE "to" compare the acting_user XE "acting_user" with associations XE "associations" on your model, for example, say your model has an owner XE "owner" :

belongs_to XE "belongs_to" :owner XE "owner" , :class_name XE "name" => "User"
You can assert that only the owner XE "owner" can make changes like this:

def update XE "update" _permitted? XE "update_permitted?"

 owner XE "owner" == acting_user XE "acting_user"

end
There is XE "is" a downside to XE "to" that method XE "method" – the owner XE "owner" association will be fetched from the database. That’s not really necessary, as the foreign key that we need has already been loaded. Fortunately Hobo XE "Hobo" adds a comparison method for every belongs_to XE "belongs_to" that avoids this trip to the database:

def update XE "update" _permitted? XE "update_permitted?"

 owner XE "owner" _is XE "is" ? acting_user XE "acting_user"

end
Change tracking

When deciding if an update XE "update" is XE "is" permitted (i.e.,in the update_permitted? XE "update_permitted?" method XE "method"), it will often be important to XE "to" know what exactly has changed XE "changed" . In a previous version of Hobo XE "Hobo" we had to jump through a lot of hoops to make this information available. No longer – Active Record now tracks all changes made to an object. For example, say you wish to find out about changes to an attribute XE "attribute" status. The following methods (among others) are available:

· status_changed? XE "status_changed?"

 XE "changed?" - returns true iff the attribute XE "attribute" has been changed XE "changed"
· status_was XE "status_was" - returns the old value of the attribute XE "attribute"
Note that these methods are only available on attributes XE "attributes" , not on associations XE "associations" . However, as a convenience Hobo XE "Hobo" models add *_changed XE "changed" ? XE "changed?" for all belongs_to XE "belongs_to" associations.

For example, the following definition means that only signed up users can make changes, and the status attribute XE "attribute" cannot be changed XE "changed" by anyone:

def update XE "update" _permitted? XE "update_permitted?"

 acting_user XE "acting_user" .signed_up? XE "acting_user.signed_up?" && !status_changed XE "changed" ? XE "status_changed?"

 XE "changed?"

end
As a stylistic point, sometimes it can be clearer to XE "to" use early returns, rather than to build up a large and complex boolean expression. This approach is XE "is" also a bit easier to apply comments to. For example:

def update XE "update" _permitted? XE "update_permitted?" # Must be signed up:

 return false unless acting_user XE "acting_user" .signed_up? XE "acting_user.signed_up?"

 !status_changed XE "changed" ? XE "status_changed?"

 XE "changed?"

end
Change tracking helpers

Making assertions about changes to XE "to" many attributes XE "attributes" can quickly get tedious:

def update XE "update" _permitted? XE "update_permitted?"

 !(address1_changed XE "changed" ? XE "changed?" ||

 address2_changed XE "changed" ? XE "changed?" ||

 city_changed XE "changed" ? XE "changed?" ||

 zipcode_changed XE "changed" ? XE "changed?")

end
The permission system provides four helpers to XE "to" make code like this more concise and clearer. Each of these methods are passed one or more attribute XE "attribute" names:

· only_changed? XE "only_changed?" – are the attributes XE "attributes" passed the only ones that have changed XE "changed" ? XE "changed?"
· none_changed? XE "none_changed?" – have none of the attributes XE "attributes" passed been changed XE "changed" ? XE "changed?"
· any_changed? XE "any_changed?" – have any of the attributes XE "attributes" passed been changed XE "changed" ? XE "changed?"
· all_changed? XE "all_changed?" – have all of the attributes XE "attributes" passed been changed XE "changed" ? XE "changed?"
So, for example, the previous update XE "update" _permitted? XE "update_permitted?" could be simplified to XE "to" :

def update XE "update" _permitted? XE "update_permitted?"

 none_changed XE "changed" ? XE "none_changed?"

 XE "changed?" :address1, :address2, :city, :zipcode

end
Ruby tip: if you want to XE "to" pass an array, use Ruby’s ‘splat’ operator:

READ_ONLY_ATTRS XE "READ_ONLY_ATTRS" = %w(address1 address2 city zipcode)

def update XE "update" _permitted? XE "update_permitted?"

 none_changed XE "changed" ? XE "none_changed?"

 XE "changed?" *READ_ONLY_ATTRS XE "READ_ONLY_ATTRS"

end
Note that you can include XE "include" the names of belongs_to XE "belongs_to" associations XE "associations" in your attribute XE "attribute" list.

Examples

Let’s go through a few examples. Here’s a definition that says you cannot create records faking the owner XE "owner" to XE "to" be someone else, and state XE "state" must be ‘new’:

def create_permitted? XE "create_permitted?"

 return false unless owner XE "owner" _is XE "is" ? acting_user XE "acting_user"

 state XE "state" == "new"

end
Note that by asserting owner XE "owner" _is XE "is" ? acting_user XE "acting_user" you are implicitly asserting that the acting_user is signed up, because owner can never be a reference to XE "to" a guest user.

A common requirement for update XE "update" permission is XE "is" to XE "to" restrict the list of fields that can be changed XE "changed" according to the type of user. For example, maybe an administrator can change anything, but a non-admin can only change a given set of fields:

def update XE "update" _permitted? XE "update_permitted?"

 return true if acting_user XE "acting_user" .administrator?

 only_changed XE "changed" ? XE "only_changed?"

 XE "changed?" :name XE "name" , :description

end
Note that we’re assuming there is XE "is" an administrator? method XE "method" on the user object. Such a method is not built into Hobo XE "Hobo" , but Hobo’s default user generator does add this to XE "to" your model. We’ll discuss this in more detail later on.

A typical destroy permission might be that administrators can delete anything, but non-administrators can only delete the record if they own it:

def destroy_permitted? XE "destroy_permitted?"

 acting_user XE "acting_user" .administrator? || owner XE "owner" _is XE "is" ?(acting_user)

end
View permission and never_show XE "never_show"
As you may have noticed when we introduced the permissions above, the view_permitted method XE "method" differs from the other three basic permissions in that it takes a single parameter:

def view_permitted? XE "view_permitted?" (attribute XE "attribute")

 ...

end
The method XE "method" is XE "is" required to XE "to" do double duty. If the permission system needs to determine if the acting_user XE "acting_user" is allowed to view this record as a whole, attribute XE "attribute" will be nil. Otherwise attribute will be the name XE "name" of an attribute for which view permission is requested. So when defining this method, remember that attribute may be nil.

There is XE "is" also a convenient shorthand for denying view permission for a particular attribute XE "attribute" or attributes XE "attributes" :

class MyModel

 ...

 never_show XE "never_show" :foo, :baa

 ...

end
View and edit permission will always be denied for those attributes XE "attributes" .

Edit Permission

Edit permission is XE "is" used by the view layer to XE "to" determine whether or not to render a particular form XE "form" field. That means it is not like the other permission methods, in that it’s not actually a request to view or change a record. Instead it’s more like a preview of update XE "update" permission.

Asking for edit permission is XE "is" a bit like asking: will update XE "update" permission be granted if a change is made to XE "to" this attribute XE "attribute" ? A common response to that question might be: it depends what you’re changing the attribute to. And therein lies the difference between update permission and edit permission. With update permission, we are dealing with a known quantity – we have a set of concrete changes to the object that may or may not be permitted. With edit permission, the value that the attribute will become is not known (because the user hasn’t submitted the form XE "form" yet).

Despite that difference edit permission and update XE "update" permission are obviously very closely related. Because saving you work is XE "is" what Hobo XE "Hobo" is all about, the permission system contains a mechanism for deriving edit permission based on your update_permitted? XE "update_permitted?" method XE "method" . For that reason, the edit_permitted? XE "edit_permitted?" method:

def edit_permitted? XE "edit_permitted?" (attribute XE "attribute")

 ...

end
This method XE "method" often does not need to XE "to" be implemented.

Protected, read-only, and non-viewable attributes XE "attributes"
Rails provides a few ways to XE "to" prevent attributes XE "attributes" from being updated during ‘mass assignment’:

· attr_protected XE "attr_protected"
· attr_accessible XE "attr_accessible"
· attr_readonly XE "attr_readonly"
(You can look these up in the regular Rails API reference if you’re not familiar with them).

Before the edit_permitted? XE "edit_permitted?" method XE "method" is XE "is" even called, Hobo XE "Hobo" checks these declarations. If changes to XE "to" any attribute XE "attribute" is prevented by these declarations, they will automatically be recognised as not editable.

Similarly, if a virtual attribute XE "attribute" is XE "is" read-only in the Ruby sense (it has no setter method XE "method"), that tells Hobo XE "Hobo" it is not editable. And finally, fields that are not viewable are implicitly not editable either.

Tip: if a particular attribute XE "attribute" can never be edited by any user, it’s simplest to XE "to" just declare it as attr_protected XE "attr_protected" or attr_readonly XE "attr_readonly" (read-only attributes XE "attributes" can be set on creation, but not changed XE "changed" later). If the ability to change the attribute either depends on the state XE "state" of the record, or varies from user to user, attr_protected and the rest are not flexible enough – define permission methods instead.

We’ll now take a look at how edit_permitted? XE "edit_permitted?" is XE "is" provided automatically, and then cover the details of defining edit permission yourself.

Deriving edit permission

To figure out edit permission for a particular attribute XE "attribute" , based on your definition of update XE "update" _permitted? XE "update_permitted?" , Hobo XE "Hobo" calls your update_permitted? method XE "method" , but with a special trick in place.

If your update XE "update" _permitted? XE "update_permitted?" attempts to XE "to" access the attribute XE "attribute" under test, Hobo XE "Hobo" intercepts that access and says to itself: “Aha! the permission method XE "method" tried to access the attribute, which means permission to update depends on the value of that attribute”. Given that we don’t know what value the attribute will have after the edit, we had better be conservative. The result is XE "is" false - no you cannot edit that attribute.

If, on the other hand, the permission method XE "method" returns true without ever accessing that attribute XE "attribute" , the conclusion is XE "is" : update XE "update" permission is granted regardless of the value the attribute. No matter what change is made to XE "to" the attribute, update permission will be granted, and therefore edit permission can be granted.

Neat eh? It’s not perfect but it sure is XE "is" useful. Remember you can always define edit_permitted? XE "edit_permitted?" if things don’t work out. Also note that if edit permission is incorrect, this does not result in a security hole in your application. An edit control may be rendered when it really should not have been, but on submission of the form XE "form" , the change to XE "to" the database is policed by update XE "update" _permitted? XE "update_permitted?" , not edit_permitted?.

In case you’re interested, here’s how Hobo XE "Hobo" intercepts those accesses to XE "to" the attribute XE "attribute" under test. A few singleton methods are added to the record (i.e., methods are defined on the record’s metaclass). These give special behavior to this one instance. In effect these methods make one of the models attributes XE "attributes" ‘undefined’. Any access to an undefined attribute raises Hobo::UndefinedAccessError, which is XE "is" caught by the permission system, and edit permission is denied.

Say a test is XE "is" being made for edit permission on the name XE "name" attribute XE "attribute" , the following methods will be added:

· name XE "name" - raises Hobo XE "Hobo" ::UndefinedAccessError
· name XE "name" _change - raises Hobo XE "Hobo" ::UndefinedAccessError
· name XE "name" _was XE "name_was" - returns the actual current value (because this will be the old value after the edit)

· name XE "name" _changed XE "changed" ? XE "name_changed?"

 XE "changed?" - returns true

· changed XE "changed" ? XE "changed?" - returns true

· changed XE "changed" - returns the list of attributes XE "attributes" that have changed, including name XE "name"
· changes - raises Hobo XE "Hobo" ::UndefinedAccessError
After the edit check those singleton methods are removed again.

Defining edit permission

If the mechanism described above is XE "is" not adequate for some reason, you can always define edit permission yourself. If the derived edit permission is not correct for just one field, it’s possible to XE "to" define edit permission manually for just that one field, and still have the automatic edit permission for the other fields in your model.

To define edit permission for a single attribute XE "attribute" (and keep the automatically derived edit permission for the others), define foo_edit_permitted? XE "edit_permitted?" (where foo is XE "is" the name XE "name" of your attribute). For example, if the attribute is name: XE "name:"
def name XE "name" _edit_permitted? XE "edit_permitted?"

 acting_user XE "acting_user" .administrator?

end
To completely replace the derived edit permission with your own definition, just implement edit_permitted? XE "edit_permitted?" yourself:

def edit_permitted? XE "edit_permitted?" (attribute XE "attribute")

 ...

end
The attribute XE "attribute" parameter will either be the name XE "name" of an attribute, or nil. In the case that it is XE "is" nil, Hobo XE "Hobo" is testing to XE "to" see if the current user has edit permission “in general” for this record. For example, this would be use to determine whether or not to render an edit link.

Permissions XE "Permissions" and associations XE "associations"
So far we’ve focused on policing changes to XE "to" basic data fields, but Hobo XE "Hobo" supports multi-model forms, so we also need to place restrictions on associated records. We need to specify permissions regarding:

· Changes to XE "to" the target of a belongs_to XE "belongs_to" association.

· Adding and removing items to XE "to" a has_many XE "has_many" association.

· Changes to XE "to" the fields of any related record

If we think in terms of the underlying database, it’s clear that every change ultimately comes down to XE "to" things that we have already covered - creating, updating and deleting rows. So the permission system is XE "is" able to covers these cases with a simple rule:

· If you make a change to XE "to" a record via one of the user_* methods, (e.g. user_create), and

· as a result of that change, related records are created, updated or destroyed, then

· the acting_user XE "acting_user" is XE "is" propagated to XE "to" those records, and

· any permissions defined on those records are enforced.

All we have to XE "to" do then, is XE "is" think of everything in terms of the records that are being created, modified or deleted, and it should be clear how which permissions apply. For example:

· Change the target of a belongs_to XE "belongs_to" required update XE "update" permission on the owner XE "owner" record.

· Adding a new record to XE "to" a has_many XE "has_many" association requires create permission for that new record.

· Adding and removing items to XE "to" a has_many XE "has_many" :through requires create or destroy permission on the join XE "join" model.

So there really is XE "is" no special support for associations XE "associations" in the permission system, other than the rule described above for propagating the acting_user XE "acting_user" .

Testing for changes to XE "to" belongs_to XE "belongs_to" associations XE "associations"
As discussed, no special support is XE "is" needed to XE "to" police belongs_to XE "belongs_to" associations XE "associations" , you can just check for changes to the foreign key. For example:

belongs_to XE "belongs_to" :user

def update XE "update" _permitted? XE "update_permitted?"

 acting_user XE "acting_user" .administrator || !user_id_changed XE "changed" ? XE "changed?"

end
Although that works fine, it feels a bit low level. We’d much rather say user_changed XE "changed" ? XE "changed?" , and in fact we can. For every belongs_to XE "belongs_to" association, Hobo XE "Hobo" adds a *_changed? method XE "method" , e.g. user_changed?.

In addition to XE "to" this, the attribute XE "attribute" change helpers – only_changed XE "changed" ? XE "only_changed?"

 XE "changed?" , none_changed? XE "none_changed?" , any_changed? XE "any_changed?" and all_changed? XE "all_changed?" – all accept belongs_to XE "belongs_to" association names along with regular field names.

The Permission API

It is XE "is" common in Hobo XE "Hobo" applications, especially small ones, that although you define permissions on your models, you never actually call the permissions API yourself. The model controller will use the API to XE "to" determine if POST and PUT requests are allowed, and the Rapid tags in the view layer will use the permissions API to determine what to render.

When you’re digging a bit deeper though, customizing the controllers and the views, you may need to XE "to" use the permission API yourself. That’s what we’ll look at in this section.

The standard CRUD XE "CRUD" operations.

Active Record provides a very simple API for the basic CRUD XE "CRUD" operations:

.

· Create XE "Create" – Model.create or r = Model.new; ...; r.save
· Read XE "Read" – Model.find, then access the attributes XE "attributes" on the record

· Update XE "Update" – record.save and record.update XE "update" _attributes XE "attributes"
· Delete XE "Delete" – record.destroy
The Hobo XE "Hobo" permission system adds “user” versions of these methods. For example, user_create is XE "is" like create, but takes the “acting user” as an argument, and performs a permission check before the actual create. The full set of class (model) methods are:

· Model.user_find XE "user_find" (user, ...)
A regular find, followed by record.user_view(user)
· Model.user_new(user, attributes XE "attributes")
A regular new, then set_creator(user), then record.user_view(user). If a block is XE "is" given, the yield is after the set_creator and before the user_view
· Model.user_create(user, attributes XE "attributes") (and user_create!)

As with regular create, attributes XE "attributes" can be an array of hashes, in which case multiple records are created. Equivalent to XE "to" user_new followed by record.user_save. The user_create! version raises an exception on validation errors.

The instance (record) methods are:

· record.user_save(user) (and user_save!)

A regular save plus a permission check. If new_record? is XE "is" true, checks for create permission, otherwise for update XE "update" permission.

· record.user_update XE "update" _attributes XE "attributes" (user, attributes) (and user_update_attributes!)

A regular update XE "update" _attributes XE "attributes" plus the permission check. If new_record? is XE "is" true, checks for create permission, otherwise for update permission.

· record.user_view
Performs a view permission check and raises PermissionDeniedError if it fails

· record.user_destroy
A regular destroy with a permission check first.

Direct permission tests

The methods mentioned in the previous section perform the appropriate permission tests along with some operation. If you want to XE "to" perform a permission test directly, the following methods are available:

· record.creatable_by?(user) XE "record.creatable_by?(user)"
· record.updatable_by?(user) XE "record.updatable_by?(user)"
· record.destroyable_by?(user) XE "record.destroyable_by?(user)"
· record.viewable_by?(user, attribute XE "attribute" =nil) XE "record.viewable_by?(user, attribute=nil)"
· record.editable_by?(user, attribute XE "attribute" =nil) XE "record.editable_by?(user, attribute=nil)"
There is XE "is" also:

· method XE "method" _callable_by?(user, method_name XE "name") XE "method_callable_by?(user, method_name)"
Which is XE "is" related to XE "to" web methods, which we’ll cover later on.

You should always call these methods, rather than calling the ..._permitted? methods directly, as some of them have extra logic in addition to XE "to" the call to the ..._permitted? method XE "method" .

For example, editable_by? will check things like attr_protected XE "attr_protected" first, and then call edit_permitted? XE "edit_permitted?"
Create XE "Create" , update XE "update" and destroy hooks

In addition to XE "to" the methods described in this section, the permission system extends the regular create, update XE "update" and destroy methods. If acting_user XE "acting_user" is XE "is" set, each of these will perform a permission check prior to the actual operation. This is illustrated in the very simple implementation of, for example user save:

def user_save(user)

 with_ XE "with_" acting_user XE "acting_user" (user) { save }

end
(with_ XE "with_" acting_user XE "acting_user" just sets acting_user for the duration of the block, then restores it to XE "to" it’s previous value)

Permission for web methods

In order XE "order" for a web method XE "method" to XE "to" be available to a particular user, a permission method must be defined (one permission method per web method). For example, if the web method is XE "is" send_reminder_email, you would define the permission to call that in:

def send_reminder_email_permitted?

 ...

end
As mentioned previously, you can test a method-call permission directly with:

record.method XE "method" _callable_by?(user, :send_reminder_email)
after_user_new – initialise a record using acting_user XE "acting_user"
Often we would like to XE "to" initialize some aspect of our model based on who the acting_user XE "acting_user" is XE "is" . A very common example would be to set an “owner XE "owner" ” association automatically. Hobo XE "Hobo" provides the after_user_new callback for this purpose:

belongs_to XE "belongs_to" :owner XE "owner" , :class_name XE "name" => "User",

after_user_new { |r| r.owner XE "owner" = acting_user XE "acting_user" }
Note that after_user_new fires on both user_new and user_create.
The need for an “owner XE "owner" association” is XE "is" so common that Hobo XE "Hobo" provides an additional shortcut for it:

belongs_to XE "belongs_to" :owner XE "owner" , :class_name XE "name" => "User", :creator => true
Other situations can be more complex, and the :creator => true shorthand may not suffice.

For example, an “event” model might need to XE "to" be associated with the same “group” as the acting user. In this case we go back to the after_user_new callback:

class Event

 belongs_to XE "belongs_to" :group,

 after_user_new { |event| event.group = acting_user XE "acting_user" .group }

end
OK, but what does all this have to XE "to" do with permissions? It is XE "is" quite common that you need this information to be in place in order XE "order" to confirm if permission is granted. For example:

def create_permitted? XE "create_permitted?"

 acting_user XE "acting_user" .group == group

end
This definition says that a user can only create an event in their own group. When we combine the two…

after_user_new { |event| event.group = acting_user XE "acting_user" .group }

def create_permitted? XE "create_permitted?"

 acting_user XE "acting_user" .group == group

end
…a neat thing happens. A signed up user is XE "is" allowed to XE "to" create an event, because the callback ensures that the event is in the right group, but if an attempt is made to change the group to a different one, that would fail.

The edit permission mechanism (described in a previous section) can detect this, so the end result is XE "is" that (by default) your app will have the “New Event” form XE "form" , but the form control for choosing the group will be automatically removed. The event will be automatically assigned to XE "to" the logged in user’s group. I love it when a plan comes together!

Permissions XE "Permissions" vs. validations

It may have occurred to XE "to" you that there is XE "is" some overlap between the permission system and Active Record’s validations. To an extent that’s true: they both provide a way to prevent undesirable changes from making their way into the database. The line between them is fairly clear though:

· Validations are appropriate for “normal mistakes”.

A validation “error” is XE "is" not really an application error, but a normal occurrence which is reported to XE "to" the user in a helpful manner.

· Permissions XE "Permissions" are appropriate for preventing things that should never happen.

Your user interface should provide no means by which a “permission denied” error can occur. Permission errors should only come from manually editing the browser’s address bar, or from unsolicited form XE "form" posts.

In Rails code, it’s not uncommon to XE "to" see validations used for both of these reasons. For example, the UI XE "UI" may provide radio buttons to chose “Male” or “Female”, and the model might state XE "state" :

validates_inclusion_of XE "validates_inclusion_of" :gender, :in => %w(Male Female)
In normal usage, no one will ever see the message that gets generated when this validation fails. Effectively it’s being used as a permission. In a Hobo XE "Hobo" app it might be better to XE "to" use the permission system for this example, but the declarative validates_inclusion_of XE "validates_inclusion_of" is XE "is" quite nice, so if you do use it we’ll turn a blind eye.

The administrator? Method

The idea that your user model has a boolean method XE "method" administrator? is XE "is" bit of a strong assumption. It fits for many applications, but might be totally inappropriate for many others.

Although you’ve probably seen this method XE "method" a lot, it’s important to XE "to" clarify that it’s not actually part of Hobo XE "Hobo" . Eh what?

administrator? is XE "is" only a part of Hobo XE "Hobo" insofar as:

· The user model created by the hobo_user_model XE "hobo_user_model" generator contains a boolean field administrator
· The Guest model created by the hobo generator has a method XE "method" administrator? which just returns false.

· The default permission stubs generated by hobo_model XE "hobo_model" require acting_user XE "acting_user" .administrator? for create, update XE "update" and destroy permission.

That’s it. administrator? is XE "is" a feature of those three generators, but is not a feature of the permission system itself, or any other part of the Hobo XE "Hobo" internals. The generated code is just a starting point. Two common ways you might want to XE "to" change that are:

· Get rid of the administrator field in the User model, and define a method XE "method" instead, for example:

.

 def administrator?

 roles.include XE "include" ?(Role.administrator)

 end
· Get rid of that field, and of all calls to XE "to" administrator? from your models’ permission methods. Those are just stubs that you are expected to replace

At some point we may add an option to XE "to" the generators so you will only get administrator? if you want it.

View helpers

This is XE "is" the quick version. Five permission related view-helpers are provided:

· can_create? XE "can_create?" (object=this)
· can_update XE "update" ? XE "can_update?" (object=this)
· can_edit? XE "can_edit?" – arguments are an object, or a symbol indicating a field (assumes this as the object), or both, or no arguments

· can_delete? XE "can_delete?" (object=this)
· can_call? XE "can_call?" – arguments are an object and a method XE "method" name XE "name" (symbol), or just a method name (assumes this as the object)

Hobo XE "Hobo" Controllers XE "Hobo Controllers" and Routing

By Tom Locke

This chapter of the Hobo XE "Hobo" Manual describes Hobo’s Model Controller and automatic routing. In a very simple Hobo app, you hardly need to XE "to" touch the automatically generated controllers, or even think about routing. As an app gets more interesting though, you’ll quickly need to know how to customize things. The down-side of having almost no code at all in the controllers is XE "is" that there’s nothing there to tweak. Don’t worry though, Hobo’s controllers have been built with Customization in mind. The things you will tweak commonly are extremely easy, and full Customization is not hard at all.

Contents

Introduction

Here’s a typical controller in a Hobo XE "Hobo" app. In fact this is XE "is" unchanged from the code generated by the hobo_model XE "hobo_model" _controller XE "hobo_model_controller" generator:

class AdvertsController < ActiveRecord::Base

 hobo_model XE "hobo_model" _controller XE "hobo_model_controller"
 auto_actions XE "auto_actions"

 XE "actions" :all

 end
The hobo_model XE "hobo_model" _controller XE "hobo_model_controller" declaration just does include XE "include" Hobo XE "Hobo" ::ModelController, and gives you a chance to XE "to" indicate which model this controller looks after. E.g., you can do

hobo_model XE "hobo_model" _controller XE "hobo_model_controller" Advert
By default the model to XE "to" use is XE "is" inferred from the name XE "name" of the controller.

Selecting the automatic actions XE "actions"

Hobo XE "Hobo" provides working implementations of the full set of standard REST actions XE "actions" that are familiar from Rails:

· index
· show
· new
· create
· edit
· update XE "update"
· destroy
A controller that declares

auto_actions XE "auto_actions"

 XE "actions" :all
Will have all of the above actions XE "actions" .

You can customize this either by listing the actions XE "actions" you want:

auto_actions XE "auto_actions"

 XE "actions" :new, :create, :show
Or by listing the actions XE "actions" you don’t want:

auto_actions XE "auto_actions"

 XE "actions" :all, :except => [:index, :destroy]
The :except option can be set to XE "to" either a single symbol or an array

There are two more conveniences: :read_only and :write_only. :read_only is XE "is" a shorthand for :index and :show, and :write_only is a shorthand for :create, :update XE "update" and :destroy.

Either of these shorthands must be the first argument to XE "to" auto_actions XE "auto_actions" , after which you can still list other actions XE "actions" and the :except option:

auto_actions XE "auto_actions"

 XE "actions" :write_only, :show
Owner actions XE "actions"
Hobo XE "Hobo" ’s model controller can also provide three special actions XE "actions" that take into account XE "account" the relationships between your records. Specifically, these are the “owner XE "owner" ” versions of new, index and create. To understand how these compare to XE "to" the usual actions, consider a recipe model which belongs_to XE "belongs_to" :author, :class_name XE "name" => "User". The three special actions are:

· An index page that only lists the recipes by a specific author

· A “New Recipe” page specific to XE "to" that user (i.e. to create a new recipe by that author)

· A create action XE "action" which is XE "is" specific to XE "to" that “New Recipe” page

These are all part of the RecipesController and can be added with the auto_actions XE "auto_actions"

 XE "actions" _for declaration, like this:

auto_actions XE "auto_actions"

 XE "actions" _for :author, [:index, :new, :create]
If you only want one, you can omit the brackets:

auto_actions XE "auto_actions"

 XE "actions" _for :author, :index
Action names and routes

The action XE "action" names and routes for these actions XE "actions" are as follows:

· index_for_author is XE "is" routed as /users/:author_id/products for GET requests

· new_for_author is XE "is" routed as /users/:author_id/products/new for GET requests

· create_for_author is XE "is" routed as /users/:author_id/products for POST requests

It’s common for the association name XE "name" and the class name of the target to XE "to" be the same (e.g., in an association like belongs_to XE "belongs_to" :category). We’ve deliberately chosen an example where they are different (“author” and “user”) in order XE "order" to show where the two names are used. The association name (“author”) is XE "is" used everywhere except in the /users at the beginning of the route.

Instance Variables

As well as setting the default DRYML XE "DRYML" context XE "context" , the default actions XE "actions" all make the record, or collection XE "collection" of records, available to XE "to" the view in an instance variable that follows Rails conventions. E.g. for a ‘product’ model, the product will be available as @product and the collection of products on an index page will be available as @products
Owner actions XE "actions"
For owner XE "owner" actions XE "actions" , the owner record is XE "is" made available as @<association-name>. For example, . @author in our above example.

Automatic Routes

Hobo XE "Hobo" ’s model router will automatically create standard RESTful routes for each of your models. The router inspects your controllers: any action XE "action" that is XE "is" not defined will not be routed.

At this time it is XE "is" not possible to XE "to" customize Hobo XE "Hobo" ’s routes beyond turning them on or off (by adding or removing controller actions XE "actions"). This will be addressed in the future. However, like most things in Hobo, it’s important to understand that it’s just Rails underneath.

There’s nothing to XE "to" stop you defining your own routes in addition to Hobo’s. You could even remove Hobo’s routes altogether, and define them all yourself. To do that, simply remove the call to Hobo.add_routes that Hobo adds to your routes.rb file.

Adding extra actions XE "actions"
It’s common to XE "to" want actions XE "actions" beyond the basic REST defaults. In Rails a controller action XE "action" is XE "is" simply a public method XE "method" . That doesn’t change in Hobo XE "Hobo" . You can define public methods and add routes for them just as you would in a regular Rails app. However, you probably want your new actions to be routed automatically, and even implemented automatically, just like the basic actions. For this to happen you have to tell Hobo about them as explained in this section.

Show actions XE "actions"
Suppose we want a normal view and a “detailed” view of our advert. In REST terms we want a new ‘show’ action XE "action" called ‘detail’. We can add this like this:

class AdvertsController < ActiveRecord::Base

 hobo_model XE "hobo_model" _controller XE "hobo_model_controller"
 auto_actions XE "auto_actions"

 XE "actions" :all

 show_action XE "show_action"

 XE "action" :detail

end
This action XE "action" will be routed to XE "to" /adverts/:id/detail.

Hobo XE "Hobo" will provide a default implementation. You can override this simply by defining the method XE "method" yourself:

show_action XE "show_action"

 XE "action" :detail def detail ... end
Or, as a shorthand for the same, give a block to XE "to" show_action XE "show_action"

 XE "action" :

show_action XE "show_action"

 XE "action" :detail do ... end
Index actions XE "actions"
In the same way, we might want an alternative listing (index) of our adverts. Perhaps one that gives a tabular view of the adverts:

class AdvertsController < ActiveRecord::Base

 hobo_model XE "hobo_model" _controller XE "hobo_model_controller"
 auto_actions XE "auto_actions"

 XE "actions" :all

 index_action XE "index_action"

 XE "action" :table

end
This gets routed to XE "to" /adverts/table. As with show_action XE "show_action"

 XE "action" , if you want your own implementation, you can either define the method XE "method" as normal, or pass a block to index_action XE "index_action" .

Changing action XE "action" behavior

Sometimes the implementations Hobo XE "Hobo" provide aren’t what you want. They might be close, or they might be completely out. Not a problem - you can change things as needed.

A cautionary note concerning controller methods

Always start by asking: should this go in the model? It’s a very, very, very common mistake to XE "to" put code in the controller that belongs in the model. Want to send an email in the create action XE "action" ?

Don’t! Send it from an after_create callback in the model. Want to XE "to" check something about the current user before allowing a destroy to proceed? Use Hobo XE "Hobo" ’s Permission System.

Typically, valid reasons to XE "to" add custom controller code are things like:

· Provide a custom flash message

· Change the redirect after a create / update XE "update" / destroy

· Extract parameters from params XE "params" and pass them to XE "to" the model (e.g. for searching / filtering)

· Provide special responses for different formats or requested mime-types

A good test is XE "is" to XE "to" ask: is this related to http? No? Then it probably shouldn’t be in the controller. I tend to think of controllers as a way to publish objects via http, so they shouldn’t really be dealing with anything else.

Writing an action XE "action" from scratch

The simplest way to XE "to" customize an action XE "action" is XE "is" to write it yourself. Say your advert has a boolean field published and you only want published adverts to appear on the index page. Using one of

Hobo XE "Hobo" ’s automatic scopes, you could write:

class AdvertsController < ActiveRecord::Base

 hobo_model XE "hobo_model" _controller XE "hobo_model_controller"
 auto_actions XE "auto_actions"

 XE "actions" :all

 def index XE "def index"

 @adverts = Advert.published.all

 end

 end
In other words you don’t need to XE "to" do anything different than you would in a normal Rails action XE "action" . Hobo XE "Hobo" will look for either @advert (for actions XE "actions" which expect an ID) or @adverts (for index actions) as the initial context XE "context" for a DRYML XE "DRYML" page.

(Note: In the above example, we’ve asked for the default index action XE "action" and then overwrote it. It might have been neater to XE "to" say ”auto_actions XE "auto_actions"

 XE "actions" :all, :except => :index” but it really doesn’t matter.)

Customizing Hobo XE "Hobo" ’s implementation

Often you do want the automatic action XE "action" , but you want to XE "to" customize it in some way. The way you do this varies slightly for the different kinds of actions XE "actions" , but they all follow the same pattern. We’ll start with show as an example.

The default show provided by Hobo XE "Hobo" is XE "is" simply:

def show

 hobo_show XE "hobo_show"
end
All the magic (and in the case of show there really isn’t much) takes place in hobo_show XE "hobo_show" . So immediately we can see that it’s easy to XE "to" add code before or after the default behavior:

def show

 @foo = "bar"

 hobo_show XE "hobo_show"
 logger.info "Done show!"

end
Note: assigning to XE "to" instance variables XE "instance variables" to make data available to the views work exactly as it normally would in Rails.

There is XE "is" a similar hobo_* method XE "method" for each of the basic actions XE "actions" : hobo_new XE "hobo_new" , hobo_index, etc.

Switching to XE "to" the update XE "update" action XE "action" , you might think you can do:

def update XE "update"
 hobo_update XE "hobo_update"

 XE "update"
 redirect_to XE "redirect_to" my_special_place # DON'T DO THIS!

end
That will give you an error: actions XE "actions" can only respond by doing a single redirect or render, and hobo_update XE "hobo_update"

 XE "update" has already done a redirect. Read XE "Read" on for the simple solution…

The block

The correct place to XE "to" perform a redirect is XE "is" in a block passed to hobo_update XE "hobo_update"

 XE "update" . All the hobo_* actions XE "actions" take a block and yield to the block just before their response. If your block performed a response, Hobo XE "Hobo" will leave it at that. So:

def update XE "update"
 hobo_update XE "hobo_update"

 XE "update" do

 redirect_to XE "redirect_to" my_special_place # better but still problematic

 end

end
The problem this time is XE "is" that we almost certainly don’t want to XE "to" do that redirect if there were validation errors during the update XE "update" . As with the typical Rails pattern, validation errors are handled by re-rendering the form XE "form" (along with the error messages). Hobo XE "Hobo" provides a method XE "method" valid? for these situations:

def update XE "update"
 hobo_update XE "hobo_update"

 XE "update" do

 redirect_to XE "redirect_to" my_special_place if valid?

 End

end
If the update XE "update" was valid, the above redirect will happen. If it wasn’t, the block won’t respond so Hobo XE "Hobo" ’s response will kick in and re-render the form XE "form" . Perfect!

If you want access to XE "to" the object either in the block or after the call to hobo_update XE "hobo_update"

 XE "update" , it’s available either as this or in the conventional Rails instance variable, in this case @advert.

Handling different formats

By default, the response block is XE "is" only called if an HTML XE "HTML" response is required. If you want to XE "to" handle other response types, declare a block with a single argument. The “format XE "format" ” object from Rails’ respond_to will be passed. The typical usage would be:

def update XE "update"
 hobo_update XE "hobo_update"

 XE "update" do |format XE "format" |

 format XE "format" .html { ... }

 format XE "format" .js { ... }

 end

end
Passing options XE "options"
Here’s another example of tweaking one of the automatic actions XE "actions" . The hobo_* methods can all be passed a range of options XE "options" . Here’s a simple example: changing the page size XE "size" on an index page:

def index XE "def index"
 hobo_index :per_page => 10

end
That’s pretty much all there is XE "is" to XE "to" customizing Hobo XE "Hobo" ’s automatic actions XE "actions" : define the action XE "action" as a public method XE "method" in which you call the appropriate hobo_* method, passing it parameters and/or a block.

The remainder of this guide will cover the parameters available to XE "to" each of the hobo_* methods.

Note that you can also pass these options XE "options" directly to XE "to" the index_action XE "index_action"

 XE "action" and show_action XE "show_action" declarations, e.g.:

index_action XE "index_action"

 XE "action" :table, :per_page => 10
The default actions XE "actions"
In this section we’ll go through each of the action XE "action" implementations that Hobo XE "Hobo" provides.

hobo_index
hobo_index takes a “finder” as an optional first argument, and then options XE "options" . A finder is XE "is" any object that supports the find and / or paginate methods, such as an ActiveRecord model class, a has_many XE "has_many" association, or a scope.

Find options XE "options"
Any of the standard ActiveRecord find options XE "options" you pass are forwarded to XE "to" the find method XE "method" . This is XE "is" particularly useful with the :include XE "include" option to avoid the dreaded N+1 query problem.

Pagination

Turn pagination on or off by passing true/false to XE "to" the :paginate option. If not specified Hobo XE "Hobo" will guess based on the value of request.format XE "format" .

It’s normally on, but won’t be for things like XML XE "XML" and CSV. When pagination is XE "is" on, any other options XE "options" to XE "to" hobo_index are forwarded to the paginate method XE "method" from will-paginate, so you can pass things like :page and :per_page. If you don’t specify :page it defaults to params XE "params" [:page] or if that’s not given, the first page.

hobo_show XE "hobo_show"
Options to XE "to" hobo_show XE "hobo_show" are forwarded to the method XE "method" find_instance which does:

model.user_find XE "user_find" (current_user, params XE "params" [:id], options XE "options")
user_find XE "user_find" is XE "is" a method XE "method" added to XE "to" your model by Hobo XE "Hobo" which combines a normal find with a check for view permission.

As with hobo_index, a typical use would be to XE "to" pass :include XE "include" to do eager loading.

hobo_new XE "hobo_new"
hobo_new XE "hobo_new" will either instantiate the model for you using the user_new method XE "method" from Hobo XE "Hobo" ’s permission system, or will use the first argument (if you provide one) as the new record.

hobo_create XE "hobo_create"
hobo_create XE "hobo_create" will instantiate the model (using user_new), or take the first argument if you provide one.

The attributes XE "attributes" hash for this new record are found either from the option :attributes if you passed one, or from the conventional parameter that matches the model name XE "name" (e.g. params XE "params" [:advert]).

The update XE "update" to XE "to" the new record with these attributes XE "attributes" is XE "is" performed using the user_update_attributes method XE "method" , in order XE "order" to respect the model’s permissions.

The response (assuming you didn’t respond in the block) will handle:

· redirection if the create was valid (see below for details)

· re-rendering the form XE "form" if not (or sending textual validation errors back to XE "to" an AJAX caller)

· performing Hobo XE "Hobo" ’s part updates as required for AJAX requests

hobo_update XE "hobo_update"

 XE "update"
hobo_update XE "hobo_update"

 XE "update" has the same behavior as hobo_create XE "hobo_create" except that the record is XE "is" found rather than created. You can pass the record as the first argument if you want to XE "to" find it yourself.

The response is XE "is" also essentially the same as hobo_create XE "hobo_create" , with some extra smarts to XE "to" support the in-place-editor from Script.aculo.us.

hobo_destroy
The record to XE "to" destroy is XE "is" found using the find_instance method XE "method" , unless you provide it as the first argument.

The actual destroy is XE "is" performed with:

this.user_destroy(current_user)
…which performs a permission check first.

The response is XE "is" either a redirect or an AJAX part update XE "update" as appropriate.

Owner actions XE "actions"
For the “owner XE "owner" ” versions of the index, new and create actions XE "actions" , Hobo XE "Hobo" provides:

· hobo_index_for XE "hobo_index_for"
· hobo_new XE "hobo_new" _for XE "hobo_new_for"
· hobo_create XE "hobo_create" _for XE "hobo_create_for"
These are pretty much the same as the regular hobo_index, hobo_new XE "hobo_new" and hobo_create XE "hobo_create" except they take an additional first argument – the name XE "name" of the association. For example, the default implementation of, say, index_for_author would be:

def index XE "def index" _for_author

 hobo_index_for XE "hobo_index_for" :author

end
Flash messages

The hobo_create XE "hobo_create" , hobo_update XE "hobo_update"

 XE "update" and hobo_destroy actions XE "actions" all set reasonable flash messages in flash[:notice]. They do this before your block is XE "is" called so you can simply overwrite this message with your own if need be.

Automatic redirection

The hobo_create XE "hobo_create" , hobo_create_for XE "hobo_create_for" , hobo_update XE "hobo_update"

 XE "update" and hobo_destroy actions XE "actions" all perform a redirect on success.

Block Response

If you supply a block to XE "to" the hobo_* action XE "action" , no redirection is XE "is" done so that it may be performed by the block:

def update XE "update"
 hobo_update XE "hobo_update"

 XE "update" do

 redirect_to XE "redirect_to" my_special_place if valid?

 end

end
The :redirect parameter

If you supply a block to XE "to" the hobo_* action XE "action" , you must redirect or render all potential formats. But what if you want to supply a redirect for HTML XE "HTML" requests, but let Hobo XE "Hobo" handle AJAX requests? In this case you can supply the :redirect option to hobo_*:

def update XE "update"
 hobo_update XE "hobo_update"

 XE "update" :redirect => my_special_place

end
:redirect is XE "is" only used for valid HTML XE "HTML" requests.

The :redirect: option may be one of:

· Symbol: redirects to XE "to" that action XE "action" using the current controller and model. (Must be a show action).

· Hash or String: to" redirect\to from Rails
 is XE "is" used.

· Array: object_url is XE "is" used.

Automatic redirects

If neither a response block nor :redirect are passed to XE "to" hobo_*, the destination of this redirect is XE "is" determined by calling the destination_after_submit XE "submit" method XE "method" . Here’s how it works:

· If the parameter ”after_submit XE "submit" ” is XE "is" present, go to XE "to" that URL (See the <after-submit> tag in Rapid for an easy way to provide this parameter), or

· Go to XE "to" the record’s show page if there is XE "is" one, or

· Go to XE "to" the show page of the object’s owner XE "owner" if there is XE "is" one (For example, this might take you to the blog post after editing a comment), or

· Go to XE "to" the index page for this model if there is XE "is" one, or

· Give up trying to XE "to" be clever and go to the home-page (the root URL, or override by implementing home_page in ApplicationController)

Autocompleters

Hobo XE "Hobo" makes it easy to XE "to" build auto-completing text fields in your user interface; the Rapid tag library provides support for them in the view layer, and the controller provides an easy way to add the action XE "action" that looks up the completions.

The simplest form XE "form" for creating an auto-completing field is XE "is" just a single declaration:

class UsersController < ApplicationController

 autocomplete XE "autocomplete"
end
Because Hobo XE "Hobo" allows you to XE "to" specify which field of a model is XE "is" the name XE "name" (using :name => true in the model’s field declaration block), you don’t need to tell autocomplete XE "autocomplete" which field to complete on if it is autocompleting the “name” field. To create an autocompleter for a different field, pass the field as a symbol:

autocomplete XE "autocomplete" :email_address
The autocomplete XE "autocomplete" declaration will create an action XE "action" named according to XE "to" the field, e.g., complete_email_address routed as, in this case, /users/complete_email_address for GET requests.

Options

The autocomplete XE "autocomplete" behavior can be customized with the following options XE "options" :

· :field – specify a field to XE "to" complete on. Defaults to the name XE "name" (first argument) of the autocompleter.

· :limit XE "limit" – maximum number of completions. Defaults to XE "to" 10.

· :param XE "param" – name XE "name" of the parameter in which to XE "to" expect the user’s input. Defaults to :query
· :query_scope – a named scope used to XE "to" do the database query. Change this to control things such as handling of multiple words, case sensitivity, etc. For our example this would be email_address_contains. Note that this is XE "is" one of Hobo XE "Hobo" ’s automatic scopes.

Further Customization

The autocomplete XE "autocomplete" action XE "action" follows the same pattern for Customization as the regular actions XE "actions" . That is XE "is" , the implementation given to XE "to" you is a simple call to the underlying method XE "method" that does the actual work, and you can call this underlying method directly. To illustrate, say, on a UsersController in which you declare autocomplete :email_address, the generated method looks like:

def complete_email_address

 hobo_completions :email_address, User

end
To gain extra control, you can call hobo_completions yourself by passing a block to XE "to" autocomplete XE "autocomplete" :

autocomplete XE "autocomplete" :email_address do hobo_completions ... end
The parameters to XE "to" hobo_completions are:

· Name of the attribute XE "attribute"
· A finder, i.e. a model class, association, or a scope.

· Options (the same as described above)

Drag and drop reordering

The controller has the server-side support for drag-and-drop reordering of models that declare acts_as_list.

Say, for example, your Task model uses acts_as_list, then Hobo XE "Hobo" will add a reorder action XE "action" routed as /tasks/reorder that looks like:

def reorder

 hobo_reorder XE "hobo_reorder"
end
This action XE "action" expects an array of IDs in params XE "params" [:task_ordering], and will reorder the records in the order XE "order" that the IDs are given.

The action XE "action" can be removed in the normal ways (e.g., blacklisting):

auto_actions XE "auto_actions"

 XE "actions" :all, :except => :reorder
The action XE "action" will raise a PermissionDeniedError if the current user does not have permission to XE "to" change the ordering.

Permission and “not-found” errors

Any permission errors that happen are handled by the permission_denied controller method XE "method" , which renders the DRYML XE "DRYML" tag <permission-denied-page> or just a text message if that doesn’t exist.

Not-found errors are handled in a similar way by the not_ XE "not_" found method XE "method" , which tries to XE "to" render <not-found-page>
Both permission_denied and not_ XE "not_" found can be overridden either in an individual controller or site-wide in ApplicationController.

Lifecycles XE "Lifecycles"
Hobo XE "Hobo" ’s model controller has extensive support for lifecycles. This is XE "is" described in the Lifecycles XE "Lifecycles" chapter.

Hobo XE "Hobo" Lifecycles XE "Hobo Lifecycles"

 XE "Lifecycles"

By Tom Locke

This chapter of the Hobo XE "Hobo" manual describes Hobo’s “lifecycle” mechanism. This is XE "is" an extension that lets you define a lifecycle for any Active Record model. Defining a lifecycle is like a finite state XE "state" machine – a pattern which turns out to XE "to" be extremely useful for modelling all sorts of processes that crop up in the world that we’re trying to model.

That might make Hobo’s lifecycles sound similar to XE "to" the well known acts_as_state XE "state" _machine plugin, and in a way they are, but with Hobo style. The big win comes from the fact that, like many things in Hobo:

There is XE "is" support for this feature in all three of the MVC XE "MVC" layers

This is XE "is" the secret to XE "to" making it very quick and easy to get up and running.

Introduction

In the REST style, which is XE "is" popular with Rails coders, we view our objects a bit like documents: you can post them to XE "to" a website, get them again later, make changes to them and delete them. Of course, these objects also have behavior, which we often implement by hooking functionality to the create / update XE "update" / delete events (like using callbacks such as after_create in Active Record).

In a pinch we may have to XE "to" fall back to the RPC style, which Hobo XE "Hobo" has support for with the “Web Method” feature.

This works great for many situations, but some objects are not best thought of as documents that we create and edit. In particular, applications often contain objects that model some kind of process. A good example is XE "is" friendship in a social app. Here’s a description of how friendship might work:

· Any user can invite friendship with another user

· The other user can accept or reject (or perhaps ignore) the invite.

· The friendship is XE "is" only active once it’s been accepted

· An active friendship can be cancelled by either user.

Not a “create”, “update XE "update" ” or “delete” in sight. Those bold words capture the way we think about the friendship much better. Of course we could implement friendship in a RESTful style, but we’d be doing just that – implementing it, not declaring it.

The life-cycle of the friendship would be hidden in our code, scattered across a bunch of callbacks, permission methods and state XE "state" variables. Experience has shown this type of code to XE "to" be tedious to write, extremely error prone and fragile when changing.

Hobo XE "Hobo" lifecycles is XE "is" a mechanism for declaring the lifecycle of a model in a natural manner.

REST vs. lifecycles is XE "is" not an either/or choice. Some models will support both styles. A good example is a content XE "content" management system with some kind of editorial workflow. An application like that might have an Article model, which can be created, updated and deleted like any other REST resource. The Article might also feature a lifecycle that defines how the article goes from newly authored, through one or more stages of review (possibly being rejected at any stage) before finally becoming accepted, and later published.

An Example

Everyone loves an example, so here is XE "is" one. We’ll stick with the friendship idea. If you want to XE "to" try this out, create a blank app and add a model:

>ruby script/generate XE "ruby script/generate" hobo_model XE "hobo_model" friendship
Here’s the code for the friendship mode (don’t be put off by the MagicMailer XE "MagicMailer" , that’s just a made-up class to XE "to" illustrate a common use of the callback actions XE "actions" – sending emails):

[image: image329.png]state timvited, cactive, :ignozed
Greate :invite, tparams > [‘invites |, ibecoss > :invited,

vitor.nane} wante to be friends with yout

trensition ‘accept, { ‘iavited => ‘active], ‘availeble_to > ‘imvites do

vitee.nane} s now you: fxiend)"

zeject, { invited -> :destroy i, ‘avilable to o> :invites do

Hagietaties send invitor, "fiinvitee.nane} blew you st ("

fon tignore, { :invited => ‘ignored , ‘availeble_to = ‘invites

trensition zeteact, { :invited > dastroy 1, ‘availeble_to = iimvitor do

vitor.nase} reconsidered®

fon teancel, | ‘active => idestroy |, ‘aveilableto > [‘imviter, :imvites

tadter send to, "iacting use.name] cancelled your friendanip®

Figure 334: Defining the Friendship model
Usually, the lifecycle can be represented as a graph, just as we would draw a finite state XE "state" machine:

[image: image330.png]@ requester requestee §
Start [}

destroy |
requested . 1 {

ignored

Let’s work through what we did there.

Because Friendship has a lifecycle declared, a class is XE "is" created that captures the lifecycle. The class is Friendship::Lifecycle. Each instance of Friendship will have an instance of this class associated with it, available as my_friendship.lifecycle.

The Friendship model will also have a field called state XE "state" declared. The migration XE "migration" generator will create a database column for state.

The lifecycle has three states:

state XE "state" :invited, :active, :ignored
There is XE "is" one ‘creator’ – this is a starting point for the lifecycle:

[image: image331.png]create :invite, :params => [:invites], :become => :invited,
‘available_to => "User",
tusex_becomes => :invitor do

MagicMailer.send invitee, "#(invitor.name) wants to be friends with you'

end

This declaration specifies that:

· The name XE "name" of the creator is XE "is" invite. It will be available as a method XE "method" Friendship::Lifecycle.invite(user, attributes XE "attributes"). Calling the method will instantiate the record, setting attributes from the hash that is passed in.

· The :params XE "params" option specifies which attributes XE "attributes" can be set by this create step:

 :params XE "params" => [:invitee]
(Any other key in the attributes XE "attributes" hash passed to XE "to" invite will be ignored.)

· The lifecycle state XE "state" after this create step will be invited:

 :become => :invited,

· To have access to XE "to" this create step, the acting user must be an instance of User (i.e. not a guest):

 :available_to XE "to" => "User"

· After the create step, the invitor association of the Friendship will be set to XE "to" the acting user:

:user_becomes => :invitor

· After the create step has completed (and the database updated), the block within do..end is XE "is" executed:

[image: image332.png]sex_becomes => :invitor do
MagicMailer.send invitee, "#(invitor.name) wants to be friends with you®
end

There are five transitions XE "transitions" declared:

· accept

· reject

· ignore

· retract

· cancel

These become methods on the lifecycle object (not the lifecycle class), For example:

 my_fiendship.lifecycle.accept!(user, attributes XE "attributes")

 Calling that method XE "method" will:

· Check if the transition XE "transition" is XE "is" allowed.

· If it is XE "is" , update XE "update" the record with the passed in attributes XE "attributes" . The attributes that can change are declared in a :params XE "params" option, as we saw with the creator. None of the friendship transitions XE "transitions" declare any :params, so no attributes will change, and

· change the state XE "state" field to XE "to" the new state, then

· save the record, as long as validations pass.

Each transition XE "transition" declares:

· Which states it goes from and to XE "to" , e.g., accept goes from invited to active:
transition XE "transition" :accept, { :invited => :active }

Some of the transitions XE "transitions" are to XE "to" a pseudo state XE "state" : :destroy. To move to this state is XE "is" to destroy the record.

· Who has access to XE "to" it:

.

:available_to XE "to" => :invitor

:available_to XE "to" => :invitee

In the create step the :available_to XE "to" option was set to a class name XE "name" , here it is XE "is" set to a method XE "method" (a belongs_to XE "belongs_to" association).

To be allowed, the acting user must be the same user returned by this method XE "method" . There are a variety ways that :available_to XE "to" can be used, which will be discussed in detail later.

· A callback (the block). This is XE "is" called after the transition XE "transition" completes. Notice that in the block for the cancel transition we’re accessing acting_user XE "acting_user" , which is a reference to XE "to" the user performing the transition.

Hopefully that worked example has clarified what lifecycles are all about. We’ll move on and look at the details now.

Key concepts

Before getting into the API we’ll recap some of the key concepts very briefly.

As mentioned in the introduction, the lifecycle is XE "is" essentially a finite state XE "state" machine. It consists of:

· One or more states. Each has a name XE "name" , and the current state XE "state" is XE "is" stored in a simple string field in the record. If you like to XE "to" think of a finite state machine as a graph, these are the nodes.

· Zero or more creators. Each has a name XE "name" , and they define actions XE "actions" that can start the lifecycle, setting the state XE "state" to XE "to" be some start-state.

· Zero or more transitions XE "transitions" . Each has a name XE "name" , and they define actions XE "actions" that can change the state XE "state" . Again, thinking in terms of a graph, these are the arcs between the nodes.

The creators and the transitions XE "transitions" are together known as the steps of the lifecycle.

There are a variety of ways to XE "to" limit XE "limit" which users are allowed to perform which steps, and there are ways to attach custom actions XE "actions" (e.g., send an email) both to steps and to states.

Defining a lifecycle

Any Hobo XE "Hobo" model can be given a lifecycle like this:

[image: image333.png]class Friendship < ActiveRecord::Base
hobo_model

lifecycle do

... define lifecyle steps and states ...

end

end

Any model that has such a declaration will gain the following features:

· The lifecycle definition becomes a class called Lifecycle which is XE "is" nested inside the model class (e.g. Friendship::Lifecycle) and is a subclass of Hobo XE "Hobo" ::Lifecycles XE "Lifecycles" ::Lifecycle. The class has methods for each of the creators.

· Every instance of the model will have an instance of this class available from the #lifecycle method XE "method" . The instance has methods for each of the transitions XE "transitions" :

[image: image334.png]my_friendship. lifecycle.class #
my_friendship.lifecycle. reject! (user)

The lifecyle declaration can take three options XE "options" :

· :state XE "state" _field - the name XE "name" of the database field (a string field) to XE "to" store the current state in. Default ’state’

· :key_timestamp_field - the name XE "name" of the database field (a datetime field) to XE "to" store a timestamp for transitions XE "transitions" that require a key (discussed later). Set to false if you don’t want this field. Default ’key_timestamp’.

· :key_timeout - keys will expire after this amount of time. Default 999.years.

Note that both of these fields are declared never_show XE "never_show" and attr_protected XE "attr_protected" .

Within the lifecycle do ... end a simple DSL is XE "is" in effect. Using this we can add states and steps to XE "to" the lifecycle.

Defining states

To declare states:

lifecycle do

 state XE "state" :my_state, :my_other_state

end
You can call state XE "state" many times, or pass several state names to XE "to" the same call.

Each state XE "state" can have an action XE "action" associated with it:

state XE "state" :active do

 MagicMailer XE "MagicMailer" .send [invitee, invitor], "Congratulations, you are now friends"

end
You can provide the :default => true option to XE "to" have the database default for the state XE "state" field be this state:

state XE "state" :invited, :default => true
This will take effect the next time you generate and apply a hobo migration XE "migration" .
Defining creators

A creator is XE "is" the starting point for a lifecycle. They provide a way for the record to XE "to" be created (in addition to the regular new and create methods). Each creator becomes a method XE "method" on the lifecycle class. The definition looks like:

create name XE "name" , options XE "options" do

...

end
The name XE "name" is XE "is" a symbol. It should be a valid ruby name that does not conflict with the class methods already present on the Hobo XE "Hobo" ::Lifecycles XE "Lifecycles" ::Lifecycle class.

The options XE "options" are:

· :params XE "params" - an array of attribute XE "attribute" names that are parameters of this create step. These attributes XE "attributes" can be set when the creator runs.

· :become - the state XE "state" to XE "to" enter after running this creator. This does not have to be static but can depend on runtime state. Provide one of:

· A symbol – the name XE "name" of the state XE "state"
· A proc – if the proc takes one argument it is XE "is" called with the record, if it takes none it is instance_eval‘d on the record. Should return the name XE "name" of the state XE "state"
· A string – evaluated as a Ruby expression with in the context XE "context" of the record

· :if and :unless – a precondition on the creator. Pass either:

· A symbol – the name XE "name" of a method XE "method" to XE "to" be called on the record

· A string – a Ruby expression, evaluated in the context XE "context" of the record

· A proc – if the proc takes one argument it is XE "is" called with the record, if it takes none it is instance_eval‘d on the record.

Note that the precondition is XE "is" evaluated before any changes are made to XE "to" the record using the parameters to the lifecycle step.

· :new_key – generate a new lifecycle key for this record by setting the key_timestamp field to XE "to" be the current time.

· :user_becomes – the name XE "name" of an attribute XE "attribute" (typically a belongs_to XE "belongs_to" relationship) that will set to XE "to" the acting_user XE "acting_user" .

· :available_to XE "to" – Specifies who is XE "is" allowed access to the creator. This check is in addition to the precondition (:if or :unless). There are a variety of ways to provide the :available_to option, discussed later on.

The block given to XE "to" create provides a callback which will be called after the record has been created. You can give a block with a single argument, in which case it will be passed the record, or with no arguments in which case it will be instance_eval‘d on the record.

Defining transitions XE "transitions"
A transition XE "transition" is XE "is" an arc in the graph of the finite state XE "state" machine – an operation that takes the lifecycle from one state to XE "to" another (or, potentially, back to the same state.). Each transition becomes a method XE "method" on the lifecycle object (with ! appended). The definition looks like:

transition XE "transition" name XE "name" , { from => to XE "to" }, options XE "options" do ... end
(The name XE "name" is XE "is" a symbol. It should be a valid Ruby name

The second argument is XE "is" a hash with a single item:

{ from => to XE "to" }

(We chose this syntax for the API just because the => is XE "is" quite nice to XE "to" indicate a transition XE "transition")

This transition XE "transition" can only be fired in the state XE "state" or states given as from, which can be either a symbol or an array of symbols. On completion of this transition, the record will be in the state give as to XE "to" which can be one of:

· A symbol – the name XE "name" of the state XE "state"
· A proc – if the proc takes one argument it is XE "is" called with the record, if it takes none it is instance_eval‘d on the record. Should return the name XE "name" of the state XE "state" .

· A string – evaluated as a Ruby expression with in the context XE "context" of the record.

The options XE "options" are:

· :params XE "params" - an array of attribute XE "attribute" names that are parameters of this transition XE "transition" . These attributes XE "attributes" can be set when the transition runs.

· :if and :unless – a precondition on the transition XE "transition" . Pass either:

· A symbol – the name XE "name" of a method XE "method" to XE "to" be called on the record

· A string – a Ruby expression, evaluated in the context XE "context" of the record

· A proc – if the proc takes one argument it is XE "is" called with the record, if it takes none it is instance_eval‘d on the record.

· :new_key – generate a new lifecycle key for this record by setting the key_timestamp field to XE "to" be the current time.

· :user_becomes – the name XE "name" of an attribute XE "attribute" (typically a belongs_to XE "belongs_to" relationship) that will set to XE "to" the acting_user XE "acting_user" .

· :available_to XE "to" – Specifies who is XE "is" allowed access to the transition XE "transition" . This check is in addition to the precondition (:if or :unless). There are a variety of ways to provide the :available_to option, discussed later on.

The block given to XE "to" transition XE "transition" provides a callback which will be called after the record has been updated. You can give a block with a single argument, in which case it will be passed the record, or with no arguments in which case it will be instance_eval‘d on the record.

Repeated transition XE "transition" names

It is XE "is" not required that a transition XE "transition" name XE "name" is distinct from all the others. For example, a process may have many stages (states) and there may be an option to XE "to" abort the process at any stage. It is possible to define several transitions XE "transitions" called :abort, each starting from a different start state XE "state" . You could achieve a similar effect by listing all the start states in a single transition, but by defining separate transitions, each one could, for example, be given a different action XE "action" (block).

The :available_to XE "to" option

Both create and transition XE "transition" steps can be made accessible to XE "to" certain users with the :available_to option. If this option is XE "is" given, the step is considered ‘publishable’, and there will be automatic support for the step in both the controller and view layers.

The rules for the :available_to XE "to" option are as follows. Firstly, it can be one of these special values:

· :all – anyone, including guest users, can trigger the step

· :key_holder – (transitions XE "transitions" only) anyone can trigger the transition XE "transition" , provided record.lifecycle.provided_key is XE "is" set to XE "to" the correct key. Discussed in detail later.

If :available_to XE "to" is XE "is" not one of those, it is an indication of some code to run (just like the :if option for example):

· A symbol – the name XE "name" of a method XE "method" to XE "to" call

· A string – a Ruby expression which is XE "is" evaluated in the context XE "context" of the record

· A proc – if the proc takes one argument it is XE "is" called with the record, if it takes none it is instance_eval‘d on the record

The value returned is XE "is" then used to XE "to" determine if the acting_user XE "acting_user" has access or not. The value is expected to be:

· A class – access is XE "is" granted if the acting_user XE "acting_user" is a kind_of? that class.

· A collection XE "collection" – if the value responds to XE "to" :include XE "include" ?, access is XE "is" granted if include?(acting_user XE "acting_user") is true.

· A record – if the value is XE "is" neither a class or a collection XE "collection" , access is granted if the value is the acting_user XE "acting_user"
Some examples:

Say a model has an owner XE "owner" :

belongs_to XE "belongs_to" :owner XE "owner" , :class_name XE "name" => "User"

You can just give the name XE "name" of the relationship (since it is XE "is" also a method XE "method") to XE "to" restrict the transition XE "transition" to that user:

:available_to XE "to" => :owner XE "owner"
Or a model might have a list of collaborators associated with it:

has_many XE "has_many" :collaborators, :class_name XE "name" => "User"
Again it’s easy to XE "to" make the lifecycle step available to them only (since the has_many XE "has_many" does respond to :include XE "include" ?):

:available_to XE "to" => :collaborators
If you were building more sophisticated role based permissions, you could make sure you role object responds to XE "to" :include XE "include" ? and then say, for example:

:available_to XE "to" => "Roles XE "Roles" .editor"
Validations

Validations have been extended so you can give the name XE "name" of a lifecycle step to XE "to" the :on option.

validates_presence_of :notes, :on => :submit XE "submit"
There is XE "is" ao now support for

 record.lifecycle.valid_for_foo?

 where foo is XE "is" a lifecycle transition XE "transition" .

Controller actions XE "actions" and routes

As well as providing the lifecycle mechanism in the model, Hobo XE "Hobo" also supports the lifecycle in the controller layer, and provides an automatic user interface in the view layer. All of this can be fully customized of course. In this section we’ll look at the controller layer features, including the routes that get generated.

Lifecycle steps that include XE "include" the :available_to XE "to" option are considered publishable. It is XE "is" these that Hobo XE "Hobo" generates controller actions XE "actions" for. Any step that does not have the :available_to option can be thought of as ‘internal’.

Of course you can call those create steps and transitions XE "transitions" from your own code, but Hobo will never do that for you.

auto_actions XE "auto_actions"

 XE "actions"
The lifecycle actions XE "lifecycle actions"

 XE "actions" are added to XE "to" your controller by the auto_actions XE "auto_actions" directive. To get them you need to say one of:

· auto_actions XE "auto_actions"

 XE "actions" :all
· auto_actions XE "auto_actions"

 XE "actions" :lifecycle – adds only the lifecycle actions XE "lifecycle actions"
· auto_actions XE "auto_actions"

 XE "actions" :accept, :do_accept (for example) – as always, you can list the method XE "method" names explicitly (the method names that relate to XE "to" lifecycle actions XE "lifecycle actions" are given below)

You can also remove lifecycle actions XE "lifecycle actions"

 XE "actions" with:

· auto_actions XE "auto_actions"

 XE "actions" ... :except => :lifecycle – don’t create any lifecycle actions XE "lifecycle actions" or routes

· auto_actions XE "auto_actions"

 XE "actions" ... :except => [:do_accept, ...] – don’t create the listed lifecycle actions XE "lifecycle actions" or routes

Create XE "Create" steps

For each create step that is XE "is" publishable, the model controller adds two actions XE "actions" . Going back to XE "to" the friendship example, two actions will be created for the invite step. Both of these actions will pass the current_user to the lifecycle, so access restrictions (the :available_to option) will be enforced, as will any preconditions (:if and :unless).

The “create page” action XE "action"
FriendshipsController#invite will be routed as /friendships/invite for GET requests.

This action XE "action" is XE "is" intended to XE "to" render a form XE "form" for the create step. An object that provides metadata about the create step will be available in @creator (an instance of Hobo XE "Hobo" ::Lifecycles XE "Lifecycles" ::Creator).

If you want to XE "to" implement this action XE "action" yourself, you can do so using the creator_page_action method XE "method" :

def invite

 creator_page_action XE "action" :invite

end
Following the pattern of all the action XE "action" methods, you can pass a block in which you can customize the response by setting a flash message, rendering or redirecting. do_creator_action also takes a single option:

· :redirect – change where to XE "to" redirect to on a successful submission. Pass a symbol to redirect to that action XE "action" (show actions XE "actions" only) or an array of arguments which are passed to object_url. Passing a String or a Hash will pass your arguments straight to redirect_to XE "redirect_to" .

The ‘do create’ action XE "action"
FriendshipsController#do_invite will be routed as /friendships/invite for POST requests.

This action XE "action" is XE "is" where the form XE "form" should POST to XE "to" . It will run the create step, passing in parameters from the form. As with normal form submissions (i.e. create and update XE "update" actions XE "actions"), the result will be an HTTP redirect, or the form will be re-rendered in the case of validation failures.

Again you can implement this action XE "action" yourself:

def do_invite

 do_creator_action XE "action" :invite

end
You can give a block to XE "to" customize the response, or pass the redirect option:

· :redirect – change where to XE "to" redirect to on a successful submission. Pass a symbol to redirect to that action XE "action" (show actions XE "actions" only) or an array of arguments that are passed to object_url. Passing a String or a Hash will pass your arguments straight to redirect_to XE "redirect_to" .

Transitions

As with create steps, for each publishable transition XE "transition" there are two actions XE "actions" . For both of these actions, if parmas[:key] is XE "is" present, it will be set as the provided_key on the lifecycle, so transitions XE "transitions" that are :available_to XE "to" => :key_holder will work automatically.

We’ll take the friendship accept transition XE "transition" as an example.

The transition XE "transition" page

FriendshipsController#accept will be routed as /friendships/:id/accept for GET requests.

This action XE "action" is XE "is" intended to XE "to" render a form XE "form" for the transition XE "transition" . An object that provides metadata about the transition will be available in @transition (an instance of Hobo XE "Hobo" ::Lifecycles XE "Lifecycles" ::Transition).

You can implement this action XE "action" yourself using the transition XE "transition" _page_action method XE "method"
def accept

 transition XE "transition" _page_action XE "action" :accept

end
As usual, you can customize the response by passing a block. And you can pass the following option:

· :key – the key to XE "to" set as the provided key, for transitions XE "transitions" that are:

:available_to XE "to" => :key_holder.

· Defaults to XE "to" params XE "params" [:key]
The ‘do transition XE "transition" ’ action XE "action"
FriendshipsController#do_accept will be routed as /friendships/:id/accept for POST requests.

This action XE "action" is XE "is" where the form XE "form" should POST to XE "to" . It will run the transition XE "transition" , passing in parameters from the form. As with normal form submissions (i.e., create and update XE "update" actions XE "actions"), the result will be an HTTP redirect, or the form will be re-rendered in the case of validation failures.

You can implement this action XE "action" yourself using the do_transition XE "transition" _action XE "do_transition_action" method XE "method" :

def do_accept

 do_transition XE "transition" _action XE "do_transition_action"

 XE "action" :accept

end
As usual, you can customize the response by passing a block. And you can pass the following options XE "options" :

· :redirect – change where to XE "to" redirect to on a successful submission. Pass a symbol to redirect to that action XE "action" (show actions XE "actions" only) or an array of arguments which are passed to object_url.

· :key – the key to XE "to" set as the provided key, for transitions XE "transitions" that are :available_to => :key_holder. Defaults to params XE "params" [:key]
Keys and secure links

Hobo XE "Hobo" ’s lifecycles also provide support for the “secure link” pattern. By “secure” we mean that on one other than the holder of the link can access the page or feature in question. This is XE "is" achieved by including some kind of cryptographic key in the URL, which is typically sent in an email address. The two very common examples are:

· Password reset – following the link gives the ability to XE "to" set a new password for a specific account XE "account" . By using a secure link and emailing it to the account holders email address, only a person with access to that email account can chose the new password.

· Email activation – by following the link, the user has effectively proved that they have access to XE "to" that email account XE "account" . Many sites use this technique to verify that the email address you have given is XE "is" one that you do in fact have access to.

In fact the idea of a secure link is XE "is" more general than that. It can be applied in any situation where you want a particular person to XE "to" participate in a process, but that person does not have an account XE "account" on the site.

For example, in a CMS workflow application, you might want to XE "to" email a particular person to ask them to verify that the content XE "content" of an article is XE "is" technically correct. Perhaps this is a one-off request so you don’t want to trouble them with signing up. Your app could provide a page with “approve”/”reject” buttons, and access to that page could be protected using the secure link pattern. In this way, the person you email the secure link to, and no one else, would be able to accept or reject the article.

Hobo XE "Hobo" ’s lifecycles provide support for the secure-link pattern with the following:

· A field added to XE "to" the database called (by default) ”key_timestamp”. This is XE "is" a date-time field, and is used to generate a key as follows:

[image: image335.png]Digest::SHAL.hexdigest ("#{id_of_record)-#{current_state}-#{key_tinestanp}")

· Both create and transition XE "transition" steps can be given the option :new_key => true. This causes

 the key_timestamp to XE "to" be updated to Time.now.

· The :available_to XE "to" => :key_holder option (transitions XE "transitions" only). Setting this means the transition XE "transition" is XE "is" only allowed if the correct key has been provided, like this:

 record.lifecycle.provided_key = the_key
Hobo XE "Hobo" ’s “model controller” also has (very simple) support for the secure-link pattern. Prior to XE "to" rendering the form XE "form" for a transition XE "transition" , or accepting the form submission of a transition, it does (by default):

record.lifecycle.provided_key = params XE "params" [:key]
Implementing a lifecycle with a secure-link

Stringing this all together, we would typically implement the secure-link pattern as follows.

We’re assuming some knowledge of Rails mailers here, so you may need to XE "to" read up on those.

· Create XE "Create" a mailer (script/generate mailer) which will be used to XE "to" send the secure link.

· In your lifecycle definition, two steps will work together:

· A create or transition XE "transition" will initiate the process, by generating a new key, emailing the link, and putting the lifecycle in the correct state XE "state" .

· A transition XE "transition" from this state XE "state" will be declared as :available_to XE "to" => :key_holder, and will perform the protected action XE "action" .

· Add :new_key => true to XE "to" the create or transition XE "transition" step that initiates the process.

· On this same step, add a callback that uses the mailer to XE "to" send the key to the appropriate user. The key is XE "is" available as lifecycle.key. For example, the default Hobo XE "Hobo" user model has:

[image: image336.png]transition true do

equest_password_reset, { iactive => sactive }, inew key
UserMailer.deliver_forgot_password(self, lifecycle.key)
end

· Add :available_to XE "to" => :key_holder to the subsequent transition XE "transition" – the one you want to make available only to recipients of the email.

· The mailer should include XE "include" a link in the email, and they key should be part of this link as a query parameter. Hobo XE "Hobo" creates a named route for each transition XE "transition" page, so there will be a URL helper available. For example, if the transition is XE "is" on User and is called reset_password, the link in your mailer template should look something like:

<%= user_reset_password_url :host => @host, :id => @user, :key => @key %>
Testing for the active step.

In some rare cases your code might need to XE "to" know if a lifecycle step is XE "is" currently in progress or not (e.g. in a callback or a validation). For this you can access either:

record.lifecycle.submit XE "submit" _in_progress.active_step.name XE "name"
Or, if you are interested in a particular step, it’s easier to XE "to" call:

record.lifecycle.submit XE "submit" _in_progress?
Where submit XE "submit" can be any lifecycle step.

Hobo XE "Hobo" View Hints XE "View Hints"
By Tom Locke

One of the main attractions of Hobo XE "Hobo" is XE "is" its ability to XE "to" give you a pretty decent starting point for you app’s UI XE "UI" , entirely automatically based on information extracted from your models and controllers. The more information available to Hobo, the better job it can do, but some such information doesn’t properly belong in either the model or the controller. For example, we might want to declare that a particular field should have a different name XE "name" in the UI than in the model layer. View Hints XE "View Hints" are the home for these kinds of declarations.

View hints are added to XE "to" a Hobo XE "Hobo" application by defining classes, one for each model, that extend Hobo::ViewHints XE "ViewHints" . Here’s an example - app/viewhints/answer_hints.rb from the Hobo Cookbook app:

class AnswerHints < Hobo XE "Hobo" ::ViewHints XE "ViewHints"
 field_names XE "field_names" :body XE "body" => "", :recipe => "See recipe"

 field_help :recipe => "Enter keywords from the name XE "name" of a recipe"

end
As you can see, the view-hint class contains some simple declarations that pertain to XE "to" a single model - the Answer model in this case. That’s really all there is XE "is" to a view-hints XE "view-hints" class. If you think of the class as little more than a YAML file with some configuration information in it, you won’t be far wrong. In fact we could have used YAML files for view-hints, but using Ruby instead makes things more powerful for the metaprogrammers out there who want to explore new territory. In the normal course of events, these classes will not contain anything other than the declarations described in this chapter.

In that example we made three declarations about the user interface that we desire:

· The body XE "body" field does not need a label XE "label" (i.e. it’s name XE "name" is XE "is" blank).

· The recipe field should be labelled “See recipe”

· The recipe field should be displayed with the help text “Enter keywords from the name XE "name" of a recipe”

What do these declarations do? By themselves, nothing. They are just information, metadata if you like, that we have provided about a model. The information can be retrieved using the view-hints XE "view-hints" API, for example (using the Rails console).

>> Answer.view_hints XE "view_hints" .field_name XE "name" :recipe => "See recipe"

>> Answer.view_hints XE "view_hints" .field_help[:recipe] => "Enter keywords from the name XE "name" of a recipe"
This API is XE "is" used internally in Hobo XE "Hobo" , for example in the Rapid tag library, to XE "to" create a user interface according to your declarations. That’s really all there is to it.

At present view-hints XE "view-hints" are fairly new to XE "to" Hobo XE "Hobo" . They will be put to a lot greater use as Hobo develops.

It’s important to XE "to" note that the view-hints XE "view-hints" mechanism is XE "is" entirely optional, and may not be appropriate for all applications (especially larger applications). Everything you can do with view-hints can be done with much more flexibility XE "flexibility" by defining DRYML XE "DRYML" tags and page templates. What view-hints give you, is a way to achieve common UI XE "UI" Customizations very quickly and easily.

Defining hints

As mentioned, the hints are defined in ViewHints XE "ViewHints" classes. There is XE "is" one per model, and they live in app/viewhints. The hobo_model XE "hobo_model" _generator will create blank view-hints XE "view-hints" classes as a starting point.

At present, there are only four kinds of hints you can give about your models:

· The model name XE "name" – in case you want this to XE "to" differ from the actual class name

· Field names – in case you want any of these to XE "to" differ from the database column names

· Field help – some simple explanatory text for each field in a model

· Child relationships – allows you to XE "to" arrange your models in a hierarchy appropriate for the user interface.

Model name XE "name"
To declare a custom model name XE "name"
:

class BlogPostHints < Hobo XE "Hobo" ::ViewHints XE "ViewHints"
 model_name XE "model_name"

 XE "name" "Post"

end
NOTE: At the time of writing, support for the model_name XE "model_name" declaration in Hobo XE "Hobo" Rapid is XE "is" partial. The underlying class name XE "name" may still be used in places.

Field names

To declare one or more custom field names:

class UserHints < Hobo XE "Hobo" ::ViewHints XE "ViewHints"
 field_names XE "field_names" :username => "Name", :details => "Profile"

end
If you give an empty string as the name XE "name" , the Rapid form XE "form" generators will arrange the form appropriately, with no label XE "label" for that field.

Field help

To declare help text for one or more fields:

class AnswerHints < Hobo XE "Hobo" ::ViewHints XE "ViewHints"
 field_help :recipe => "Enter keywords for the recipe",

 :subject => "Provide a ..."

end
Rapid will include XE "include" the help text next to XE "to" each field in the forms that it generates.

Child relationships

Many web applications arrange the information they present in a hierarchy. By declaring a hierarchy using the children XE "children" declaration, Hobo XE "Hobo" can give you a much better default user interface.

At present, the children XE "children" declaration only influences Rapid’s show-page – it governs the display of collections of <card XE "card" > tags embedded in the show-page. If you declare a single child collection XE "collection" , e.g.:

class UserHints < Hobo XE "Hobo" ::ViewHints XE "ViewHints"
 children XE "children" :recipes

end
..the collection XE "collection" of the user’s recipes will be added to XE "to" the main content XE "content" of users/show.

You can declare additional child relationships. The order XE "order" is XE "is" significant, with the first in the list being the “primary collection XE "collection" ”. For example:

class UserHints < Hobo XE "Hobo" ::ViewHints XE "ViewHints"
 children XE "children" :recipes, :questions, :answers

end
With this declaration, the user’s show-page will be given an aside section (sidebar), in which cards for the questions and answers collections are displayed.

Inline Booleans XE "Inline Booleans"

By default, Rapid will display boolean fields as part of the header XE "header" if they are true (so an :administrator field will turn into the text 'Administrator' just under the main heading XE "heading" on the show page).

The inline_booleans view hint can alter this behavior for some or all of the model's boolean fields. Fields specified as inline booleans will be rendered as part of the regular field list.

class UserHints < Hobo::ViewHints XE "ViewHints"
 inline_booleans :administrator, :moderator
end

As a shortcut…

class UserHints < Hobo::ViewHints XE "ViewHints"
 inline_booleans true
end

…will apply the option to XE "to" all boolean fields in the model.

The API

The view-hints XE "view-hints" API is XE "is" used internally by Hobo XE "Hobo" Rapid. You may not ever need to XE "to" use it yourself.

For completeness it is XE "is" documented here.

The view-hints XE "view-hints" for any model can be access using the view_hints XE "view_hints" method XE "method" :

MyModel.view_hints XE "view_hints"
That will return the view-hints XE "view-hints" class from which the hints can be accessed. Each of the declaration methods can be called without arguments to XE "to" retrieve the declared values. e.g.

>> BlogPost.view_hints XE "view_hints" .model_name XE "model_name"

 XE "name" => "Post"
Helpers

The following view helpers are defined to XE "to" simplify access to view-hints XE "view-hints" information during rendering:

· this_field XE "this_field" _name XE "this_field_name" – returns the view-hints XE "view-hints" modified name XE "name" of the field currently referenced by DRYML XE "DRYML" ’s this_field. That is XE "is" , the field of the current context XE "context"
· this_field XE "this_field" _help XE "this_field_help" – returns the help text associated with the field currently in context XE "context" .

Hobo Scopes XE "Hobo Scopes"
By Bryan Larsen

Hobo scopes are an extension of the named scope and dynamic finder functionality introduced in Rails 2.1, 2.2 and 2.3.

Most of these scopes work by calling named_scope XE "named_scope" the first time they are invoked. They should work at the same speed as a named scope on subsequent invocations
.

However, this does substantially slow down method XE "method" _missing on your model’s class. If ActiveRecord::Base.method_missing is XE "is" used often, you may wish to XE "to" disable this module.

Simple Scopes XE "Scopes"
_is XE "_is"
_is_not XE "_is_not"
_contains

_does_not_contain XE "_does_not_contain"
_starts XE "_starts"
_does_not_start XE "_does_not_start"
_ends XE "_ends"
_does_not_end XE "_does_not_end"
Boolean Scopes XE "Boolean Scopes"

 XE "Scopes"
not_ XE "not_"
Date Scopes XE "Date Scopes"

 XE "Scopes"
_before" _before

_after" _after

_between" _between

Lifecyle Scopes XE "Lifecyle Scopes"

 XE "Scopes"
Key Scopes XE "Key Scopes"

 XE "Scopes"
Static Scopes XE "Static Scopes"

 XE "Scopes"
by_most_recent XE "by_most_recent"

 XE "recent"
recent XE "recent"
limit XE "limit"
order" order_by
 XE "order_by"
include XE "include"
search XE "search"
Association Scopes XE "Association Scopes"

 XE "Scopes"
with_ XE "with_"
without_ XE "without_"
_is" _is

_is_not" _is_not

Scoping Associations

Chaining XE "Chaining"
Let’s set up a few models for our testing:

class Person < ActiveRecord::Base

 hobo_model XE "hobo_model"
 fields do

 name XE "name" :string

 born_at :date

 code :integer

 male :Boolean

 timestamps XE "timestamps"
 end

 lifecycle(:key_timestamp_field => false) do

 state XE "state" :inactive, :active

 end

 has_many XE "has_many" :friendships

 has_many XE "has_many" :friends, :through => :friendships

end

class Friendship < ActiveRecord::Base

 hobo_model XE "hobo_model"
 belongs_to XE "belongs_to" :person

 belongs_to XE "belongs_to" :friend, :class_name XE "name" => "Person"

end
Generate a migration XE "migration" and run it:

>> ActiveRecord::Migration.class_eval(HoboFields::MigrationGenerator.run[0])
>> Person.columns.*.name XE "name" => ["id", "name", "born_at", "code", "male", "created_at", "updated_at", "state XE "state" "]
And create a couple of fixtures:

>> bryan = Person.new(:name XE "name" => "Bryan", :code => 17, :born_at => Date.new(1973,4,8), :male => true)

>> bryan.state XE "state" = "active" >> bryan.save!

>> bethany = Person.new(:name XE "name" => "Bethany", :code => 42, :born_at => date.new(1975,5,13), :male => false)

>> bethany.state XE "state" = "inactive" >> bethany.save!

>> Friendship.new(:person => Bryan, :friend => bethany).save!
Hack the created_at column to XE "to" get predictable sorting:

>> bethany.created_at = Date.new(2000)

>> bethany.save!
We’re ready to XE "to" get going.

Simple Scopes XE "Simple Scopes"
_is XE "_is"
Most Hobo XE "Hobo" scopes work by appending an appropriate query string tothe field nameIn this case, the hobo scope function name isthe name of your database column, followed by _is. It returns an Array of models.

It works the same as a dynamic finder:

>> Person.find_all_by_name XE "name" ("Bryan").*.name => ["Bryan"]

>> Person.name XE "name" _is XE "is" ("Bryan").*.name => ["Bryan"]

>> Person.code_is XE "is" (17).*.name XE "name" => ["Bryan"]

>> Person.code_is XE "is" (99).length => 0
_is_not XE "_is_not"
But the Hobo XE "Hobo" scope form XE "form" allows us to XE "to" supply several variations:

>> Person.name XE "name" _is XE "is" _not("Bryan").*.name => ["Bethany"]
_contains XE "_contains"
>> Person.name XE "name" _contains("y").*.name => ["Bryan", "Bethany"]
_does_not_contain XE "_does_not_contain"
>> Person.name XE "name" _does_not_ XE "not_" contain("B").*.name => []
_starts XE "_starts"
>> Person.name XE "name" _starts("B").*.name => ["Bryan", "Bethany"]
_does_not_start XE "_does_not_start"
>> Person.name XE "name" _does_not_ XE "not_" start("B").length => 0
_ends XE "_ends"
>> Person.name XE "name" _ends("y").*.name => ["Bethany"]
_does_not_end XE "_does_not_end"
>> Person.name XE "name" _does_not_ XE "not_" end("y").*.name => ["Bryan"]
Boolean scopes XE "Boolean scopes"
If you use the name XE "name" of the column by itself, the column is XE "is" of type boolean, and no function is already defined on the model class with the name, Hobo XE "Hobo" scopes adds a dynamic finder to XE "to" return all records with the boolean column set to true:

>> Person.male.*.name XE "name" => ["Bryan"]
not_ XE "not_"
You can also search XE "search" for boolean records that are not true. This includes all records that are set to XE "to"

false or NULL.

>> Person.not_ XE "not_" male.*.name XE "name" => ["Bethany"]
Date scopes XE "Date scopes" \t "See"
Date scopes work only with columns that have a name XE "name" ending in ”at”. The ”at” is XE "is" omitted when using these finders.

_before XE "_before" \t "See"
>> Person.born_before(Date.new(1974)).*.name XE "name" => ["Bryan"]
_after XE "_after" \t "See"
>> Person.born_after(Date.new(1974)).*.name XE "name" => ["Bethany"]
_between XE "_between" \t "See"
>> Person.born_between(Date.new(1974), Date.today).*.name XE "name" => ["Bethany"]
Lifecycle scopes XE "Lifecycle scopes" \t "See"
If you have a lifecycle defined, each state XE "state" name can be used as a dynamic finder.

>> Person.active.*.name XE "name" => ["Bryan"]
Key scopes XE "Key scopes" \t "See"
This isn’t very useful:

>> Person.is XE "is" (Bryan).*.name XE "name" => ["Bryan"]
But this is:

>> Person.is XE "is" _not(Bryan).*.name XE "name" => ["Bethany"]
Static scopes XE "Static scopes" \t "See"
These scopes do not contain the column name XE "name" .

by_most_recent XE "by_most_recent"

 XE "recent"
Sorting on the created_at column:

>> Person.by_most_recent XE "by_most_recent"

 XE "recent" .*.name XE "name" => ["Bryan", "Bethany"]
recent XE "recent"
Gives the N most recent XE "recent" items:

>> Person.recent XE "recent" (1).*.name XE "name" => ["Bryan"]
limit XE "limit"
>> Person.limit XE "limit" (1).*.name XE "name" => ["Bryan"]
order XE "order" _by XE "order_by"
>> Person.order XE "order" _by XE "order_by" (:code).*.name XE "name" => ["Bryan", "Bethany"]
include XE "include"
Adding the include XE "include" function to XE "to" your query chain has the same effect as the :include option to the find method XE "method" .

>> Person.include XE "include" (:friends).*.name XE "name" => ["Bryan", "Bethany"]
search XE "search"
Search for text in the specified column(s).

>> Person.search XE "search" ("B", :name XE "name").*.name => ["Bryan", "Bethany"]
Association Scopes XE "Association Scopes"

 XE "Scopes"
with_ XE "with_"
Find the records that contain the specified record in an association

>> Person.with_ XE "with_" friendship(Friendship.first).*.name XE "name" => ["Bryan"]

>> Person.with_ XE "with_" friend(Bethany).*.name XE "name" => ["Bryan"]
You can also specify multiple records with the plural XE "plural" form XE "form"
>> Person.with_ XE "with_" friends(Bethany, nil).*.name XE "name" => ["Bryan"]
without_ XE "without_"
>> Person.without_ XE "without_" friend(Bethany).*.name XE "name" => ["Bethany"

>> Person.without_ XE "without_" friends(Bethany, nil).*.name XE "name" => ["Bethany"]
_is XE "_is" \t "See"
You can use _is XE "is" on a :has_one or a :belongs_to XE "belongs_to" relationship:

>> Friendship.person_is XE "is" (Bryan).*.friend.*.name XE "name" => ["Bethany"]
_is_not XE "_is_not" \t "See"
>> Friendship.person_is XE "is" _not(Bryan) => []
Scoping Associations XE "Scoping Associations" \t "See"
When defining an association, you can add a scope:

>> class Person

 has_many XE "has_many" :active_friends, :class_name XE "name" => "Person",:through => :friendships, :source => :friend, :scope => :active

 has_many XE "has_many" :inactive_friends, :class_name XE "name" => "Person",:through => :friendships, :source => :friend, :scope => :inactive

 end

 >> bryan.inactive_friends.*.name XE "name" => ["Bethany"]

 >> bryan.active_friends.*.name XE "name" => []
Or several scopes:

>>

 class Person

 has_many XE "has_many" :inactive_female_friends,:class_name XE "name" => "Person",

 :through => :friendships, :source => :friend,

 :scope => [:inactive, :not_ XE "not_" male]

 has_many XE "has_many" :active_female_friends, :class_name XE "name" => "Person",

 :through => :friendships, :source => :friend, :scope => [:active, :not_ XE "not_" male]

 has_many XE "has_many" :inactive_male_friends, class_name XE "name" => "Person",

 :through => :friendships,:source => :friend, :scope => [:inactive, :male]

 end

>> bryan.inactive_female_friends.*.name XE "name" => ["Bethany"]

>> bryan.active_female_friends.*.name XE "name" => []

>> bryan.inactive_male_friends.*.name XE "name" => []
You can parameterize the scopes:

>> class Person

 has_many XE "has_many" _:y_friends,:class_name XE "name" => "Person",:through => :friendships,

 :source => :friend, :scope => { :name XE "name" _contains => 'y' }

 has_many XE "has_many" :z_friends,:class_name XE "name" => "Person", :through => :friendships, :source => :friend, :scope => { :name_contains => 'z' }

 end

 >> bryan.y_friends.*.name XE "name" => ["Bethany"]

 >> bryan.z_friends.*.name XE "name" => []
Chaining XE "Chaining" \t "See"
Like named scopes, Hobo scopes can be chained:

>> bryan.inactive_friends.inactive.*.name XE "name" => ["Bethany"]
Hobo XE "Hobo" DRYML XE "DRYML" Guide XE "DRYML Guide"
By Tom Locke

What is DRYML XE "DRYML" ?

DRYML XE "DRYML" is XE "is" a template language for Ruby on Rails that you can use in place of Rails’ built-in ERB XE "ERB" templates. It is part of the larger Hobo XE "Hobo" project, but will eventually be made available as a separate plugin.

DRYML XE "DRYML" was created in response to XE "to" the observation that the vast majority of Rails development time seems to be spent in the view-layer. Rails’ models are beautifully declarative, the controllers can be made so pretty easily (witness the many and various “result controller” plugins), but the views, ah the views…

Given that so much of the user interaction we encounter on the web is XE "is" so similar from one website to XE "to" another, surely we don’t have to code all this stuff up from low-level primitives over and over again? Please, no!

Of course what we want is XE "is" a nice library of ready-to-go user interface components, or widgets, which can be quickly added to XE "to" our project, and easily tailored to the specifics of our application.

If you’ve been at this game for a while you’re probably frowning about now. Re-use is XE "is" a very, very thorny problem. It’s one of those things that sounds straight-forward and obvious in principle, but turns out to XE "to" be horribly difficult in practice. When you come to re-use something, you very often find that your new needs differ from the original ones in a way that wasn’t foreseen or catered for in the design of the component. The more complex the component, the more likely it is that bending the thing to your needs will be harder than starting again from scratch.

So the challenge is XE "is" not in being able to XE "to" re-use code, it is:

 Being able to XE "to" re-use code in ways that were not foreseen.

The reason we created DRYML XE "DRYML" was to XE "to" see if this kind of flexibility XE "flexibility" could be built into the language itself. DRYML is XE "is" a tag-based language that makes it trivially easy to give the defined tags a great deal of flexibility.

So DRYML XE "DRYML" is XE "is" just a means to XE "to" an end. The real goal is to create a library of reusable user-interface components that actually succeed in making it very quick and easy to create the view layer of a web application.

That library is XE "is" also part of Hobo XE "Hobo" – the Rapid tag library. You will visit this library later on in the book. Here we will see how DRYML XE "DRYML" provides the tools and raw materials that make a library like Rapid possible.

Discussing DRYML XE "DRYML" before Rapid means that many of the examples are not good advice for use of DRYML in a full Hobo XE "Hobo" app. For example, you might see

<%= h this.name XE "name" %>
Which in an app that used Rapid would be better written <view:name XE "name" /> or even just <name/> (that’s a tag by the way, called name, not some metaprogramming trick that lets you use field names as tags). Bear that in mind while you’re reading this chapter. The examples are chosen to XE "to" illustrate the point at hand, they are not necessarily something you want to paste right into your application.

Simple page templates and ERB XE "ERB"
In its most basic usage, DRYML XE "DRYML" can be indistinguishable from a normal Rails template. That’s because DRYML is XE "is" (almost) an extension of ERB XE "ERB" , so you can still insert Ruby snippets using the <% ... %> notation. For example, a show-page for a blog post might look like this:

<html>

 <head>

 <title>My Blog</title>

 </head>

 <body XE "body" >

 <h1>My Famous Blog!</h1>

 <h2><%= @post.title %></h2>

 <div class="post-body">

 <%= @post.body XE "body" %>

 </div>

 </body XE "body" >

 </html>
No ERB XE "ERB" inside tags

DRYML XE "DRYML" ’s support for ERB XE "ERB" is XE "is" not quite the same as true ERB templates. The one thing you can’t do is use ERB snippets inside a tag. To have the value of an attribute XE "attribute" generated dynamically in ERB, you could do:

<a href="<%= my_url %>">
In DRYML XE "DRYML" you would do:

In rare cases, you might use an ERB XE "ERB" snippet to XE "to" output one or more entire attributes XE "attributes" :

<form XE "form" <%= my_attributes XE "attributes" %>>
We’re jumping ahead here, so just skip XE "skip" this if it doesn’t make sense, but to XE "to" do the equivalent in DRYML XE "DRYML" , you would need your attributes XE "attributes" to be in a hash (rather than a string), and do:

<form XE "form" merge-attrs XE "merge-attrs" ="&my_attributes XE "attributes" ">
Finally, in a rare case you could even use an ERB XE "ERB" snippet to XE "to" generate the tag name XE "name" itself:

<<%= my_tag_name XE "name" %>> ... </<%= my_tag_name %>>
To achieve that in DRYML XE "DRYML" , you could put the angle brackets in the snippet too:

<%= "<#{my_tag_name XE "name" }>" %> ... <%= "</#{my_tag_name}>" %>
Where are the layouts?

Going back to XE "to" the <page> tag at the start of this section, from a “normal Rails” perspective, you might be wondering why the boilerplate stuff like <html>, <head> and <body XE "body" > are there. What happened to layouts? You don’t tend to use layouts with DRYML XE "DRYML" , instead you would define your own tag, typically <page>, and call that. Using tags for layouts is XE "is" much more flexible, and it moves the choice of layout out of the controller and into the view layer, where it should be.

We’ll see how to XE "to" define a <page> tag in the next section.

Defining simple tags

One of the strengths of DRYML XE "DRYML" is XE "is" that defining tags is done right in the template (or in an imported tag library) using the same XML-like syntax. This means that if you’ve got markup you want to XE "to" re-use, you can simply cut-and-paste it into a tag definition.

Here’s the page from the previous section, defined as a <page> tag simply by wrapping the markup in a <def> tag:

<def tag="page">

 <html>

 <head>

 <title>My Blog</title>

 </head>

 <body XE "body" >

 <h1>My Famous Blog!</h1>

 <h2><%= @post.title %></h2>

 <div class="post-body">

 <%= @post.body XE "body" %>

 </div>

 </body XE "body" >

 </html>

 </def>
Now we can call that tag just as we would call any other:

<page/>
If you’d like an analogy to XE "to" “normal” programming, you can think of the <def>...</def> as defining a method XE "method" called page, and <page/> as a call to that method.

In fact, DRYML XE "DRYML" is XE "is" implemented by compiling to XE "to" Ruby, and that is exactly what is happening.

Parameters

We’ve illustrated the most basic usage of <def>, but our <page> tag is XE "is" not very useful. Let’s take it a step further to XE "to" make it into the equivalent of a layout. First of all, we clearly need the body XE "body" of the page to be different each time we call it.

In DRYML XE "DRYML" we achieve this by adding parameters to XE "to" the definition, which is XE "is" accomplished with the param XE "param" attribute XE "attribute" . Here’s the new definition:

<def tag="page">

 <html>

 <head>

 <title>My Blog</title>

 </head>

 <body XE "body" param XE "param" />

 </html>

 </def>
Now we can call the <page> tag and provide our own body XE "body" :

<page>

 <body XE "body" :>

 <h1>My Famous Blog!</h1>

 <h2><%= @post.title %></h2>

 <div class="post-body">

 <%= @post.body XE "body" %>

 </div>

 </body XE "body" :>

 </page>
See how easy that was? We just added param XE "param" to XE "to" the <body XE "body" > tag, which means our page tag now has a parameter called body. In the <page> call we provide some content XE "content" for that parameter.

It’s very important to XE "to" read that call to <page> properly. In particular, the <body XE "body" :> (note the trailing ’:’) is XE "is" not a call to a tag, it is providing a named parameter to the call to <page>. We call <body:> a parameter tag XE "parameter tag" . In Ruby terms you could think of the call like this:

page(:body XE "body" => "...my body content XE "content" ...")
Note that is XE "is" not actually what the compiled Ruby looks like in this case, but it illustrates the important point that <page> is a call to XE "to" a defined tag, whereas <body XE "body" :> is providing a parameter to that call.

Changing Parameter Names

To give the parameter a different name XE "name" , we can provide a value to XE "to" the param XE "param" attribute XE "attribute" :

<def tag="page">

 <html>

 <head>

 <title>My Blog</title>

 </head>

 <body XE "body" param XE "param" ="content XE "content" "/>

 </html>

 </def>
We would now call the tag like this:

<page><content XE "content" :> ...body XE "body" content goes here... </content:></page>
Multiple Parameters

As you would expect, we can define many parameters in a single tag. For example, here’s a page with a side-bar:

<def tag="page">

 <html>

 <head>

 <title>My Blog</title>

 </head>

 <body XE "body" >

 <div param XE "param" ="content XE "content" "/>

 <div param XE "param" ="aside" />

 </body XE "body" >

 </html>

 </def>
Which we could call like this:

<page>

 <content XE "content" :> ... main content here ... </content:>

 <aside:> ... aside content XE "content" here ... </aside:>

</page>
Note that when you name XE "name" a parameter, DRYML XE "DRYML" automatically adds a CSS XE "CSS" class of the same name to XE "to" the output, so the two <div> tags above will be output as <div class="content XE "content" "> and <div class="aside"> respectively.

Default Parameter Content

In the examples we’ve seen so far, we’ve only put the param XE "param" attribute XE "attribute" on empty tags. That’s not required though. If you declare a non-empty tag as a parameter, the content XE "content" of that tag becomes the default when the call does not provide that parameter. This means you can easily add a parameter to XE "to" any part of the template that you think the caller might want to be able to change:

<def tag="page">

 <html>

 <head>

 <title param XE "param" >My Blog</title>

 </head>

 <body XE "body" param XE "param" >

 </html>

</def>
We’ve made the page title parameterised. All existing calls to XE "to" <page/> will continue to work unchanged, but we’ve now got the ability to change the title on a per-page basis:

<page>

 <title:>My VERY EXCITING Blog</title:>

 <body XE "body" :>

 ... body XE "body" content XE "content"
 </body XE "body" :>

</page>
This is XE "is" a very nice feature of DRYML XE "DRYML" - whenever you’re writing a tag, and you see a part that might be useful to XE "to" change in some situations, just throw the param XE "param" attribute XE "attribute" at it and you’re done.

Nested param XE "param" Declarations

You can nest param XE "param" declarations inside other tags that have param on them. For example, there’s no need to XE "to" choose between a <page> tag that provides a single content XE "content" section and one that provides an aside section as well – a single definition can serve both purposes:

<def tag="page">

 <html>

 <head>

 <title>My Blog</title>

 </head>

 <body XE "body" param XE "param" >

 <div param XE "param" ="content XE "content" "/>

 <div param XE "param" ="aside" />

 </body XE "body" >

 </html>

 </def>
Here the <body XE "body" > tag is XE "is" a param XE "param" , and so are the two <div> tags inside it. The <page> tag can be called either like this:

<page>

 <body XE "body" :> ... page content XE "content" goes here ... </body:>

</page>
Or like this:

<page>

 <content XE "content" :> ... main content here ... </content:>

 <aside:> ... aside content XE "content" here ... </aside:>

</page>
An interesting question is XE "is" , what happens if you give both a <body XE "body" :> parameter and say, <content XE "content" :>. By providing the <body:> parameter, you have replaced everything inside the body section, including those two parameterised <div> tags, so the <body:> you have provided will appear as normal, but the <content:> parameter will be silently ignored.

The Default Parameter

In the situation where a tag will usually be given a single parameter when called, you can give your tag a more compact XML-like syntax by using the special parameter name XE "name" default:

<def tag="page">

 <html>

 <head>

 <title>My Blog</title>

 </head>

 <body XE "body" param XE "param" ="default"/>

 </html
</def>
Now there is XE "is" no need to XE "to" give a parameter tag XE "parameter tag" in the call at all - the content XE "content" directly inside the <page> tag becomes the default parameter:

<page> ... body XE "body" content XE "content" goes here -- no need for a parameter tag XE "parameter tag" ... </page>
You might notice that the <page> tag is XE "is" now indistinguishable from a normal HTML XE "HTML" tag. Some find this aspect of DRYML XE "DRYML" disconcerting at first – how can you tell what is an HTML tag and what it a defined DRYML tag? The answer is – you can’t, and that’s quite deliberate. This allows you to XE "to" do nice tricks like define your own smart <form XE "form" > tag or <a> tag (the Rapid library does exactly that). Other tag-based template languages (e.g. Java’s JSP) like to put everything in XML XE "XML" namespaces. The result is very cluttered views that are boring to type and hard to read. From the start we put a very high priority on making DRYML templates compact and elegant. When you’re new to DRYML you might have to do a lot of looking things up, as you would with any new language or API, but things gradually become familiar and then view templates can be read and understood very easily.

The Implicit Context

In addition to XE "to" the most important goal behind DRYML XE "DRYML" - creating a template language that would encourage re-use in the view layer, a secondary goal is XE "is" for templates to be concise, elegant and readable. One aspect of DRYML that helps a lot in this regard is something called the implicit XE "implicit" context XE "implicit context"

 XE "context" .

This feature was born of a simple observation that pretty much every page in a web app renders some kind of hierarchy of application objects. Think about a simple page in a blog - say, the permalink page for an individual post. The page as a whole can be considered a rendering of a BlogPost object. Then we have sections of the page that display different “pieces” of the post – the title, the date, the author’s name XE "name" , the body XE "body" . Then we have the comments. The list of comments as a whole is XE "is" also a “piece” of the BlogPost. Within that we have each of the individual comments, and the whole thing starts again: the comment title, date, author… This can carry on even further, for example some blogs are set up so that you can comment on comments.

This structure is XE "is" incredibly common, perhaps even universal, as it seems to XE "to" be intrinsically tied to the way we visually parse information. DRYML XE "DRYML" ’s implicit XE "implicit" context XE "implicit context" takes advantage of this fact to make templates extremely concise while remaining readable and clear. The object that you are rendering in any part of the page is known as the context XE "context" , and every tag has access to this object through the method XE "method" this. The controller sets up the initial context, and the templates then only have to mention where the context needs to change.

We’ll dive straight into some examples, but first a quick general point about this guide. If you like to XE "to" use the full Hobo XE "Hobo" framework, you will probably always use DRYML XE "DRYML" and the Rapid tag library together. DRYML and Rapid have grown up together, and the design of each is XE "is" heavily influenced by the other. Having said that, this is the DRYML Guide XE "DRYML Guide" , not the Rapid Guide. We won’t be using any Rapid tags in this guide, because we want to document DRYML the language properly. That will possibly be a source of confusion if you’re very used to working with Rapid. Just keep in mind that we’re not allowed to use any Rapid tags in this guide and you’ll be fine.

In order XE "order" to XE "to" see the implicit XE "implicit" context XE "implicit context" in its best light, we’ll start by defining a <view> tag, that simply renders the current context XE "context" with HTML XE "HTML" escaping. Remember the context is XE "is" always available as this:

<def tag="view"><%= h this.to XE "to" _s %></def>
Next we’ll define a tag for making a link to XE "to" the current context XE "context" . We’ll assume the object will be recognised by Rails’ polymorphic XE "polymorphic" routing. Let’s call the tag <l> (for link):

<def tag="l"></def>
Now let’s use these tags in a page template. We’ll stick with the comfortingly boring blog post example. In order XE "order" to XE "to" set the initial context XE "context" , our controller action XE "action" would need to do something like this:

def show @this = @blog_post = BlogPost.find(params XE "params" [:id]) end
The DRYML XE "DRYML" template handler looks for the @this instance variable for the initial context XE "context" . It’s quite nice to XE "to" also set the more conventionally named instance variable as we’ve done here.

Now we’ll create the page. Let’s assume we’re using a <page> tag along the lines of those defined above. We’ll also assume that the blog post object has these fields: title, published_at, body XE "body" and belongs_to XE "belongs_to" :author, and that the author has a name XE "name" field:

<page>

 <content XE "content" :>

 <h2><view:title/></h2>

 <div class="details">

 Published by <l:author><view:name XE "name" /></l> on <view:published-at/>.

 </div>

 <div class="post-body">

 <view:body XE "body" />

 </div>

 </content XE "content" :>

 </page>
When you see a tag like <view:title/>, you don’t get any prizes for guessing what will be displayed. In terms of what actually happens, you can read this as “change the context XE "context" to XE "to" be the title attribute XE "attribute" of the current context, then call the <view> tag”. You might like to think of that change to the context as this = this.title (although in fact this is XE "is" not assignable). But really you just think of it as “view the title”. Of what? Of whatever is in context, in this case the blog post.

Be careful with the two different uses of colon in DRYML XE "DRYML" . A trailing colon as in <foo:> indicates a parameter tag XE "parameter tag" , whereas a colon joining two names as in <view:title/> indicates a change of context XE "context" .

When the tag ends, the context XE "context" is XE "is" set back to XE "to" what it was. In the case of <view/> which is a self-closing tag familiar from XML XE "XML" , that happens immediately. The <l:author> tag is more interesting. We set the context to be the author, so that the link goes to the right place. Inside the <l:author> that context remains in place so we just need <view:name XE "name" /> in order XE "order" to display the author’s name.

with and field attributes XE "attributes"
The with attribute XE "attribute" is XE "is" a special DRYML XE "DRYML" attribute that sets the context XE "context" to XE "to" be the result of any Ruby expression before the tag is called. In DRYML any attribute value that starts with ’&’ is interpreted as a Ruby expression. Here’s the same example as above using only the with attribute:

<page>

 <content XE "content" :>

 <h2><view with="&@blog_post.title"/></h2>

 <div class="details">

 Published by <l with="&@blog_post.author"><view with="&this.name XE "name" "/></l>

 on <view with="&@blog_post.published-at"/>.

 </div>

 <div class="post-body">

 <view with="&@blog_post.body XE "body" "/>

 </div>

 </content XE "content" :>

 </page>
Note that we could have used &this.title instead of &@blog_post.title.

The field attribute XE "attribute" makes things more concise by taking advantage of a common pattern. When changing the context XE "context" , we very often want to XE "to" change to some attribute of the current context. field="x" is XE "is" a shorthand for with="&this.x" (actually it’s not quite the same, using the field version also sets this_parent XE "this_parent" and this_field XE "this_field" , whereas with does not. This is discussed later in more detail).

The same template again, this time using field:

<page>

 <content XE "content" :>

 <h2><view field="title"/></h2>

 <div class="details">

 Published by <l field="author"><view field="name XE "name" "/></l>

 on <view field="published-at"/>.

 </div>

 <div class="post-body">

 <view field="body XE "body" "/>

 </div>

 </content XE "content" :>

 </page>
If you compare that example to XE "to" the first one, you should notice that the : syntax is XE "is" just a shorthand for the field attribute XE "attribute" ; i.e., <view field="name XE "name" "> and <view:name> are equivalent.

Field chains

Sometimes you want to XE "to" drill down through several fields at a time. Both the field attribute XE "attribute" and the : shorthand support this. For example:

<view:category.name XE "name" /> <view field="category.name"/>
this_field XE "this_field" and this_parent XE "this_parent"
When you change the context XE "context" using field="my-field" (or the <tag:my-field> shorthand), the previous context is XE "is" available as this_parent XE "this_parent" , and the name XE "name" of the field is available as this_field XE "this_field" . If you set the context using with="...", these values are not available. That means the following apparently identical tag calls are not quite the same:

<my-tag with="&@post.title"/> <my-tag with="&@post" field="title"/>
If the tag requires this_parent XE "this_parent" and this_field XE "this_field" , and in Rapid, for example, some do, then it must be called using the second style.

Numeric field indices

If your current context XE "context" is XE "is" a collection XE "collection" , you can use the field attribute XE "attribute" to XE "to" change the context to a single item.

<my-tag field="7" />

 <% i=97 %>

<my-tag field="&i" />
The <repeat> tag sets this_field XE "this_field" to XE "to" the current index into the collection XE "collection" .

<repeat:foos>

 <td><%= this_field XE "this_field" %></td>

 <td><view /></td>

 </repeat>
Forms

When rendering the Rapid library’s <form XE "form" > tag, DRYML XE "DRYML" keeps track of even more metadata in order XE "order" to XE "to" add name XE "name" attributes XE "attributes" to form fields automatically. This mechanism does not work if you set the context XE "context" using with=.

Tag attributes XE "attributes"
As we’ve seen, DRYML XE "DRYML" provides parameters as a mechanism for Customizing the markup that is XE "is" output by a tag. Sometimes we want to XE "to" provide other kinds of values to control the behavior of a tag: URLs, filenames or even Ruby values like hashes and arrays. For this situation, DRYML lets you define tag attributes XE "attributes" .

As a simple example, say your application has a bunch of help files in public/help, and you have links to XE "to" them scattered around your views. Here’s a tag you could define:

<def tag="help-link" attrs XE "attrs" ="file">

 </def>

<def> takes a special attribute XE "attribute" attrs XE "attrs" . Use this to XE "to" declare a list (separated by commas) of attributes XE "attributes" , much as you would declare arguments to a method XE "method" in Ruby. Here we’ve defined one attribute, file, and just like arguments in Ruby, file becomes a local variable inside the tag definition. In this definition we construct the href attribute from the base_url helper and file, using Ruby string interpolation syntax (#{....}). Remember that you can use that syntax when providing a value for any attribute in DRYML XE "DRYML" .

The call to XE "to" this tag would look like this:

<help-link file="intro">Introductory Help</help-link>
Using regular XML-like attribute XE "attribute" syntax – file="intro" – passes “intro” as a string value to XE "to" the attribute. DRYML XE "DRYML" also allows you to pass any Ruby value. When the attribute value starts with &, the rest of the attribute is XE "is" interpreted as a Ruby expression. For example you could use this syntax to pass true and false values:

<help-link file="intro" new-window="&true">Introductory Help</help-link> <help-link file="intro" new-window="&false">Introductory Help</help-link>
And we could add that new-window attribute XE "attribute" to XE "to" the definition like this:

<def tag="help-link" attrs XE "attrs" ="file, new-window">

 </def>
An important point to XE "to" notice there is XE "is" that the markup-friendly dash in the new-window attribute XE "attribute" became a Ruby-friendly underscore (new_window) in the local variable inside the tag definition.

Using the &, you can pass any value you like – arrays, hashes, active-record objects…

In the case of boolean values like the one used in the above example, there is XE "is" a nicer syntax that can be used in the call…

Flag attributes XE "attributes"
That new-window attribute XE "attribute" shown in the previous section is XE "is" simple switch - on or off. DRYML XE "DRYML" lets you omit the value of the attribute, giving a flag-like syntax:

<help-link file="intro" new-window>Introductory Help</help-link>

<help-link file="intro">Introductory Help</help-link>
Omitting the attribute XE "attribute" value is XE "is" equivalent to XE "to" giving "&true" as the value. In the second example the attribute is omitted entirely, meaning the value will be nil which evaluates to false in Ruby and so works as expected.

attributes XE "attributes" and all_attributes XE "all_attributes" locals

Inside a tag definition two hashes are available in local variables:

· attributes XE "attributes" contains all the attributes that were not declared in the attrs XE "attrs" list of the def but that were provided in the call to XE "to" the tag.

· all_attributes XE "all_attributes"

 XE "attributes" contains every attribute XE "attribute" , including the declared ones.

Merging Attributes

In a tag definition, you can use the merge-attrs XE "merge-attrs" attribute XE "attribute" to XE "to" take any ‘extra’ attributes XE "attributes" that the caller passed in, and add them to a tag of your choosing inside your definition. Let’s backtrack a bit and see why you might want to do that.

Here’s a simple definition for a <markdown-help XE "markdown-help" > tag--it’s similar to XE "to" a tag defined in the Hobo XE "Hobo" Cookbook app:

<def tag="markdown-help XE "markdown-help" ">

 </def>
You would use it like this:

Add formatting using <markdown-help XE "markdown-help" >markdown</markdown-help>
Suppose you wanted to XE "to" give the caller the ability to choose the target for the link. You could extend the definition like this:

<def tag="markdown-help XE "markdown-help" " attrs XE "attrs" ="target">

 </def>
Now we can call the tag like this:

Add formatting using <markdown-help XE "markdown-help" target="_blank">markdown</markdown-help>
OK, but maybe the caller wants to XE "to" add a CSS XE "CSS" class, or a javascript onclick attribute XE "attribute" , or any one of a dozen potential HTML XE "HTML" attributes XE "attributes" . This approach is XE "is" not going to scale. That’s where merge-attrs XE "merge-attrs" comes in. As mentioned above, DRYML XE "DRYML" keeps track of all the attributes that were passed to a tag, even if they were not declared in the attrs XE "attrs" list of the tag definition. They are available in two hashes: attributes (that has only undeclared attributes) and all_attributes XE "all_attributes" (that has all of them), but in normal usage you don’t need to access those variables directly. To add all of the undeclared attributes to a tag inside your definition, just add the merge-attrs attribute, like this:

<def tag="markdown-help XE "markdown-help" ">

 </def>
Note that the merge attribute XE "attribute" is XE "is" another way of merging attributes XE "attributes" . Declaring merge is a shorthand for declaring both merge-attrs XE "merge-attrs" and merge-params (which we’ll cover later).

Merging selected attributes XE "attributes"
merge-attrs XE "merge-attrs" can be given a value - either a hash containing attribute XE "attribute" names and values, or a list of attribute names (comma separated), to XE "to" be merged from the all_attributes XE "all_attributes"

 XE "attributes" variable.

Examples:

<a merge-attrs XE "merge-attrs" ="href, name XE "href, name"

 XE "name" ">

<a merge-attrs XE "merge-attrs" ="&my_attribute XE "attribute" _hash">
A requirement that crops up from time to XE "to" time is XE "is" to forward to a tag all the attributes XE "attributes" that it understands (i.e. the attributes from that tag’s attrs XE "attrs" list), and to forward some or all the other attributes to tags called within that tag. Say for example, we are declaring a tag that renders a section of content XE "content" , with some navigation at the top. We want to be able to add CSS XE "CSS" classes and so on to the main <div> that will be output, but the <navigation> tag also defines some special attributes, and these need to be forwarded to it.

To achieve this we take advantage of a helper method XE "method" attrs XE "attrs" _for. Given the name XE "name" of a tag, it returns the list of attributes XE "attributes" declared by that tag.

Here’s the definition:

<def tag="section-with-nav">

 <div class="section" merge-attrs XE "merge-attrs" ="&attributes XE "attributes" - attrs XE "attrs" _for(:navigation)"> <navigation merge-attrs="&attributes & attrs_for(:navigation)"/>

 <do param XE "param" ="default"/>

 </div>

 </def>
Note that:

· The expression attributes XE "attributes" - attrs XE "attrs" _for(:navigation) returns a hash of only those attributes from the attributes hash that are not declared by <navigation> (The - operator on Hash comes from HoboSupport)

· The expression attributes XE "attributes" & attrs XE "attrs" _for(:navigation) returns a hash of only those attributes from the attributes hash that are declared by <navigation> (The & operator on Hash comes from HoboSupport)

· The <do> tag is XE "is" a “do nothing” tag, defined by the core DRYML XE "DRYML" taglib, which is always included.

The class attribute XE "attribute"
If you have the following definition:

<def tag="foo"> <div id="foo" class="bar" merge-attrs XE "merge-attrs" /> </def>
and the user invokes it with:

<foo id="baz" class="bop" />
The following content XE "content" will result:

<foo id="baz" class="bar bop" />
The class attribute XE "attribute" receives special behavior when merging. All other attributes XE "attributes" are overridden with the user specified values. The class attribute takes on the values from both the tag definition and invocation.

Repeated and optional content XE "content"
As you would expect from any template language, DRYML XE "DRYML" has the facility to XE "to" repeat sections of content XE "content" , and to optionally render or not render given sections according to your application’s data. DRYML provides two alternative syntaxes, much as Ruby does (e.g. Ruby has the block if and the one-line suffix version of if).

Conditionals - if and unless

DRYML XE "DRYML" provides if and unless both as tags, which come from the core tag library, and are just ordinary tag definitions, and as attributes XE "attributes" , which are part of the language:

The tag version:

<if test="&logged_in?"><p>Welcome back</p></if>
The attribute XE "attribute" version:

<p if="&logged_in?">Welcome back</p>
Important note! The test is XE "is" performed (in Ruby terms) like this:

if (...your test expression...).blank?
Got that? Blankiness not truthiness (blank? comes from ActiveSupport by the way – Rails’ mixed bag of core-Ruby extensions). So for example, in DRYML XE "DRYML" :

<if test="¤t_user.comments">
is XE "is" a test to XE "to" see if there are any comments – empty collections are considered blank. We are of the opinion that Matz XE "Matz" made a fantastic choice for Ruby when he followed the Lisp / Smalltalk approach to truth values, but that view templates are a special case, and testing for blankness is more often what you want.

Can we skip XE "skip" <unless>? It’s like <if> with the nest negated. You get the picture, right?

Repetition

For repeating sections of content XE "content" , DRYML XE "DRYML" has the <repeat> tag (from the core tag library) and the repeat attribute XE "attribute" .

The tag version:

<repeat with="¤t_user.new_messages">

 <h3><%= h this.subject %></h3>

</repeat>
The attribute XE "attribute" version:

<h3 repeat="¤t_user.new_messages"><%= h this.subject %></h3>
Notice that as well as the content XE "content" being repeated, the implicit XE "implicit" context XE "implicit context"

 XE "context" is XE "is" set to XE "to" each item in the collection XE "collection" in turn.

Even/odd classes

It’s a common need to XE "to" want alternating styles for items in a collection XE "collection" - e.g. striped table rows. Both the repeat attribute XE "attribute" and the repeat tag XE "repeat tag" set a scoped variable scope.even_odd which will be alternately ‘even’ then ‘odd’, so you could do:

<h3 repeat="&new_messages" class="#{scope.even_odd}"><%= h this.subject %></h3>
That example illustrates another important point – any Ruby code in attributes XE "attributes" is XE "is" evaluated inside the repeat. In other words, the repeat attribute XE "attribute" behaves the same as wrapping the tag in a <repeat> tag.

first_item? and last_item? helpers

Another common need is XE "is" to XE "to" give special treatment to the first and last items in a collection XE "collection" . The first_item? and last_item? helpers can be used to find out when these items come up; e.g., we could use first_item? to capitalise the first item:

<h3 repeat="&new_messages"><%= h(first_item? ? this.subject.upcase : this.subject) %></h3>
Repeating over hashes

If you give a hash as the value to XE "to" repeat over, DRYML XE "DRYML" will iterate over each key/value pair, with the value available as this (i.e. the implicit XE "implicit" context XE "implicit context"

 XE "context") and the key available as this_key. This is XE "is" particularly useful for grouping things in combination with the group_by method XE "method" :

<div repeat="¤t_user.new_messages.group_by(&:sender)">

 <h2>Messages from <%= h this_key %></h2>

 <ul XE "ul" >

 <li repeat><%= h this.subject %>

 </ul XE "ul" >

 <h2>

</div>
That example has given a sneak preview of another point - using if/unless/repeat with the implicit XE "implicit" context XE "implicit context"

 XE "context" . We’ll get to XE "to" that in a minute.

Using the implicit XE "implicit" context XE "implicit context"

 XE "context"
If you don’t specify the test of a conditional, or the collection XE "collection" to XE "to" repeat over, the implicit XE "implicit" context XE "implicit context"

 XE "context" is XE "is" used. This allows for a few nice shorthands. For example, this is a common pattern for rendering collections:

<if:comments>

 <h3>Comments</h3>

 <ul XE "ul" >

 <li repeat> ...

 </ul XE "ul" >

</if>
We’re switching the context XE "context" on the <if> tag to XE "to" be this.comments, which has two effects. Firstly the comments collection XE "collection" is XE "is" used as the test for the if, so the whole section including the heading XE "heading" will be omitted if the collection is empty (remember that if tests for blankness, and empty collections are considered blank). Secondly, the context is switched to be the comments collection, so that when we come to repeat the tag, all we need to say is repeat.

One last shorthand - attributes XE "attributes" of this
The attribute XE "attribute" versions of if/unless and repeat support a useful shortcut for accessing attributes XE "attributes" or methods of the implicit XE "implicit" context XE "implicit context"

 XE "context" . If you give a literal string attribute–that is XE "is" , an attribute that does not start with &–this is interpreted as the name XE "name" of a method XE "method" on this. For example:

<li repeat="comments"/>
is XE "is" equivalent to XE "to"
<li repeat="&this.comments"/>
Similarly

<p if="sticky?">This post has been marked 'sticky'</p>
is XE "is" equivalent to XE "to"
<p if="this.sticky?">This post has been marked 'sticky'</p>
It is XE "is" a bit inconsistent that these shortcuts do not work with the tag versions of <if>, <unless> and <repeat>. This may be remedied in a future version of DRYML XE "DRYML" .

Content tags only

The attributes XE "attributes" introduced in this section – repeat, if and unless, can only be used on content XE "content" tags, i.e. static HTML XE "HTML" tags and defined tags. They cannot be used on tags like <def>, <extend> and <include XE "include" >.

Pseudo parameters - before, after, append, prepend, and replace
For every parameter you define in a tag, there are five “pseudo parameters” created as well. Four allow you to XE "to" insert extra content XE "content" without replacing existing content, and one lets you replace or remove a parameter entirely.

To help illustrate these, here’s a very simple <page> tag:

<def tag="page">

 <body XE "body" >

 <h1 param XE "param" ="heading XE "heading" "><%= h @this.to XE "to" _s %></h1>

 <div param XE "param" ="content XE "content" "></div>

 </body XE "body" >

 </def>
We’ve assumed that @this.to XE "to" _s will give us the name XE "name" of the object that this page is XE "is" presenting.

Inserting extra content XE "content"
The output of the heading XE "heading" would look something like:

<h1 class="heading XE "heading" ">Welcome to XE "to" my new blog</h1>
Pseudo parameters give us the ability to XE "to" insert extra context XE "context" in four places, marked here as (A), (B), (C) and (D):

(A)<h1 class="heading XE "heading" ">(B)Welcome to XE "to" my new blog(C)</h1>(D)
The parameters are:

· (A) – <before-heading:>
· (B) – <prepend-heading:>
· (C) – <append-heading:>
· (D) – <after-heading:>
So, for example, suppose we want to XE "to" add the name XE "name" of the blog to the heading XE "heading" :

<h1 class="heading XE "heading" ">Welcome to XE "to" my new blog -- The Hobo XE "Hobo" Blog</h1>
To achieve that on one page, we could call the <page> tag like this:

<page>

 <append-heading:> -- The Hobo XE "Hobo" Blog</append-heading:>

 <body XE "body" :> ... </body>

</page>
Or we could go a step further and create a new page tag that added that suffix automatically. We could then use that new page tag for an entire section of our site:

<def tag="blog-page">

 <page>

 <append-heading:> -- The Hobo XE "Hobo" Blog</append-heading:>

 <body XE "body" : param XE "param" ></body>

 </page>

</def>
(Note: we have explicitly made sure that the <body XE "body" :> parameter is XE "is" still available. There is a better way of achieving this using merge-params or merge, which are covered later.)

The default parameter supports append and prepend

As we’ve seen, the <append-...:> and <prepend-...:> parameters insert content XE "content" at the beginning and end of a tag’s content. But in the case of a defined tag that may output all sorts of other tags and may itself define many parameters, what exactly is XE "is" the tag’s “content”? It is whatever is contained in the default parameter tag XE "parameter tag" . So <append-...:> and <prepend-...:> only work on tags that define a default parameter.

For this reason, you will often see tag definitions include XE "include" a default parameter, even though it would be rare to XE "to" use it directly. It is XE "is" there so that <append-...:> and <prepend-...:> work as expected.

Replacing a parameter entirely

So far, we’ve seen how the parameter mechanism allows us to XE "to" change the attributes XE "attributes" and content XE "content" of a tag, but what if we want to remove the tag entirely? We might want a page that has no <h1> tag at all, or has <h2> instead. For that situation we can use “replace parameters”. Here’s a page with an <h2> instead of an <h1>:

<page>

 <heading XE "heading" : replace><h2>My Awesome Page</h2></heading:>

</page>
And here’s one with no heading XE "heading" at all:

<page>

 <heading XE "heading" : replace/>

</page>
There is XE "is" a nice shorthand for the second case. For every parameter, the enclosing tag also supports a special without attribute XE "attribute" . This is exactly equivalent to XE "to" the previous example, but much more readable:

<page without-heading/>
Note: to XE "to" make things more consistent, <heading XE "heading" : replace> may become <replace-heading:> in the future.

Current limitation

Due to XE "to" a limitation of the current DRYML XE "DRYML" implementation, you cannot use both before and after on the same parameter. You can achieve the same effect as follows (this technique is XE "is" covered properly later in the section on wrapping content XE "content"):

<heading XE "heading" : replace>

 ... before content XE "content" ...

 <heading XE "heading" restore>

 ... after content XE "content" ...

 </heading XE "heading" :>
Nested parameters

As we’ve discussed at the start of this guide, one of the main motivations for the creation of DRYML XE "DRYML" was to XE "to" deliver a higher degree of re-use in the view layer. One of the great challenges of re-use is XE "is" managing the constant tension between re-use and flexibility XE "flexibility" : the greater the need for flexibility, the harder it is to re-use existing code. This has a very direct effect on the size XE "size" of things that we can successfully re-use. Take the humble hypertext link for example. A link is a link is a link – there’s only so much you could really want to change, so it’s not surprising that long ago we stopped having to assemble links from fragments of HTML XE "HTML" text. Rails has its link_to helper, and Hobo XE "Hobo" Rapid has its <a> tag. At the other extreme, reusing an entire photo gallery or interactive calendar is extremely difficult. Again no surprise–these things have been built from scratch over and over again, because each time something slightly (or very) different is needed. A single calendar component that is flexible enough to cover every eventuality would be so complicated that configuring it would be more effort than starting over.

This tension between re-use and flexibility XE "flexibility" will probably never go away; life is XE "is" just like that. As components get larger they will inevitably get either harder to XE "to" work with or less flexible. What we can do though, through technologies like DRYML XE "DRYML" , is slow down the onset of these problems. By thinking about the fundamental challenges to re-use, we have tried to create a language in which, as components grow larger, simplicity and flexibility can be retained longer.

One of the most important features that DRYML XE "DRYML" brings to XE "to" the re-use party is XE "is" nested parameters XE "nested parameters" .

They are born of the following observations:

· As components get larger, they are not really single components at all, but compositions of many smaller sub-components.

· Often, the Customization we wish to XE "to" make is XE "is" not to the “super-component” but to one of the sub-components.

· What is XE "is" needed, then, is a means to XE "to" pass parameters and attributes XE "attributes" not just to the tag you are calling, but to the tag called within the tag, or the tag called within the tag called within the tag, and so on.

DRYML XE "DRYML" ’s nested parameter mechanism does exactly that. After you’ve been using DRYML for some time, you may notice that you don’t use this feature very often. But when you do use it, it can make the difference between sticking with your nice high-level components or throwing them away and rebuilding from scratch. A little use of nested parameters XE "nested parameters" goes a long way.

An example

To illustrate the mechanism, we’ll build up a small example using ideas that are familiar from Rapid. This is XE "is" not a Rapid guide though, so we’ll define these tags from scratch. First off, the <card XE "card" > tag. This captures the very common pattern of web pages displaying collections of some kind of object as small “cards”: comments, friends, discussion threads, etc.

<def tag="card XE "card" ">

 <div class="card XE "card" " merge-attrs XE "merge-attrs" >

 <h3 param XE "param" ="heading XE "heading" "><%= h this.to XE "to" _s %></h3>

 <div param XE "param" ="body XE "body" "></div>

 </div>

</def>
We’ve defined a very simple <card XE "card" > that uses the to XE "to" _s method XE "method" to give a default heading XE "heading" , and provides a <body XE "body" :> parameter that is XE "is" blank by default. Here’s how we might use it:

<h2>Discussions</h2>

 <ul XE "ul" >

 <li repeat="@discussions">

 <card XE "card" >

 <body XE "body" :><%= this.posts.length %> posts</body:>

 </card XE "card" >

 </ul XE "ul" >
This example (specifically, the collection XE "collection" created in the <li repeat="@discussions"> section) demonstrates that as soon as we have the concept of a card XE "card" , we very often find ourselves wanting to XE "to" render a collection of <card> tags. The obvious next step is XE "is" to capture that collection-of-cards idea as a reusable tag:

<def tag="collection XE "collection" ">

 <h2 param XE "param" ="heading XE "heading" "></h2>

 <ul XE "ul" >

 <li repeat>

 <card XE "card" param XE "param" >

 </ul XE "ul" >

 </def>
The <collection XE "collection" > tag has a straightforward <heading XE "heading" :> parameter, but notice that the <card XE "card" > tag is XE "is" also declared as a parameter. Whenever you add param XE "param" to XE "to" a tag that itself also has parameters, you give your “super-tag” (<collection> in this case) the ability to customize the “sub-tag” (<card> in this case) using nested parameters XE "nested parameters" . Here’s how we can use the nested parameters in the <collection> tag to get the same output as the <li repeat="@discussions"> section in the previous example:

<collection XE "collection" >

 <heading XE "heading" :>Discussions</heading>

 <card XE "card" :>

 <body XE "body" :><%= this.posts.length %>posts</body:>

 </card XE "card" :>

 </collection XE "collection" >
This nesting works to XE "to" any depth. To show this, if we define an <index-page> tag that uses <collection XE "collection" > and declares it as a paramater:

<def tag="index-page">

 <html>

 <head> ... </head>

 <body XE "body" >

 <h1 param XE "param" ="heading XE "heading" "></h1>

 ...

 <collection XE "collection" param XE "param" >

 ...

 </body XE "body" >

 </html>

 </def>
we can still access the card XE "card" inside the collection XE "collection" inside the page:

<index-page>

 <heading XE "heading" :>Welcome to XE "to" our forum</heading:>

 <collection XE "collection" :>

 <heading XE "heading" :>Discussions</heading>

 <card XE "card" :><body XE "body" :><%= this.posts.length %>posts</body:></card:>

 </collection XE "collection" :>

</index-page>
Pay careful attention to XE "to" the use of the trailing ’:’. The definition of <index-page> contains a call the collection XE "collection" tag, written <collection> (no ’:’). By contrast, the above call to <index-page> customizes the call to the collection tag that is XE "is" already present inside <index-page>, so we write <collection:> (with a ’:’). Remember:

· Without ’:’ – call a tag

· With ’:’ – customize an existing call inside the definition

Customizing and extending tags

As we’ve seen, DRYML XE "DRYML" makes it easy to XE "to" define tags that are highly customisable. By adding params XE "params" to the tags inside your definition, the caller can insert, replace and tweak to their heart’s content XE "content" . Sometimes the changes you make to a tag’s output are needed not once, but many times throughout the site. In other words, you want to define a new tag in terms of an existing tag.

New tags from old XE "New tags from old"
As an example, let’s bring back our card XE "card" tag:

<def tag="card XE "card" ">

 <div class="card XE "card" " merge-attrs XE "merge-attrs" >

 <h3 param XE "param" ="heading XE "heading" "><%= h this.to XE "to" _s %></h3>

 <div param XE "param" ="body XE "body" "></div>

 </div>

</def>
Now let’s say we want a new kind of card XE "card" , one that has a link to XE "to" the resource that it represents. Rather than redefine the whole thing from scratch, we can define the new card, say, “linked-card”, like this:

<def tag="linked-card">

 <card XE "card" >

 <heading XE "heading" : param XE "param" ><%= h this.to XE "to" _s %>

 </heading XE "heading" :>

 </card XE "card" >

 </def>
That’s all well and good but there are a couple of problems:

· The original card XE "card" used merge-attrs XE "merge-attrs" so that we could add arbitrary HTML XE "HTML" attributes XE "attributes" to XE "to" the final <div>. Our new card has lost that feature

· Worse than that, the new card XE "card" is XE "is" in fact useless, as there’s no way to XE "to" pass it the body XE "body" parameter

Let’s solve those problems in turn. First the attributes XE "attributes" .

merge-attrs XE "merge-attrs" again

In fact merge-attrs XE "merge-attrs" works just the same on defined tags as it does on HTML XE "HTML" tags that are output, so we can simply add it to XE "to" the call to <card XE "card" >, like this:

<def tag="linked-card">

 <card XE "card" merge-attrs XE "merge-attrs" >

 <heading XE "heading" : param XE "param" ><%= h this.to XE "to" _s %>

 </heading XE "heading" :>

 </card XE "card" >

</def>
Now we can do things like <linked-card class="emphasised">, and the attribute XE "attribute" will be passed from <linked-card>, to XE "to" <card XE "card" >, to the rendered <div>.

Now we’ll fix the parameters, it’s going to XE "to" look somewhat similar…

merge-params
We’ll introduce merge-params the same way we introduced merge-attrs XE "merge-attrs" – by showing how you would get by without it. The problem with our <linked-card> tag is XE "is" that we’ve lost the <body XE "body" :> parameter. We could bring it back like this:

<def tag="linked-card">

 <card XE "card" merge-attrs XE "merge-attrs" >

 <heading XE "heading" : param XE "param" ><%= h this.to XE "to" _s %>

 </heading XE "heading" :>

 <body XE "body" : param XE "param" />

 </card XE "card" >

</def>
In other words, we use the param XE "param" declaration to XE "to" give <linked-card> a <body XE "body" :> parameter, which is XE "is" forwarded to <card XE "card" >. But what if <card> had several parameters? We would have to list them all out. And what if we add a new parameter to <card> later? We would have to remember to update XE "update" <linked-card> and any other customized cards we had defined.

Instead we use merge-params, much as we use merge-attrs XE "merge-attrs" :

<def tag="linked-card">

 <card XE "card" merge-attrs XE "merge-attrs" merge-params>

 <heading XE "heading" : param XE "param" ><%= h this.to XE "to" _s %>

 </heading XE "heading" :>

 </card XE "card" >

 </def>
You can read merge-params as: take any “extra” parameters passed to XE "to" <linked-card> and forward them all to <card XE "card" >. By “extra” parameters, we mean any that are not declared as parameters (via the param XE "param" attribute XE "attribute") inside the definition of <linked-card>.

There are two local variables inside the tag definition that mirror the attributes XE "attributes" and all_attributes XE "all_attributes" variables described previously:

· parameters a hash containing all the “extra” parameters (those that do not match a declared parameter name XE "name")

· all_parameters a hash containing all the parameters passed to XE "to" the tag

The values in these hashes are Ruby procs. One common use of all_parameters is XE "is" to XE "to" test if a certain parameter was passed or not:

<if test="&all_parameters[:body XE "body"]">
In fact, all_parameters and parameters are not regular hashes, they are instances of a subclass of Hash – Hobo XE "Hobo" ::Dryml::TagParameters. This subclass allows parameters to XE "to" be called as if they were methods on the hash object, e.g.:

parameters.default
That’s not something you’ll use often.

merge
As it’s very common to XE "to" want both merge-attrs XE "merge-attrs" and merge-params on the same tag, there is XE "is" a shorthand for this: merge. So the final, preferred definition of <linked-card> is:

<def tag="linked-card">

 <card XE "card" merge>

 <heading XE "heading" : param XE "param" ><%= h this.to XE "to" _s %>

 </heading XE "heading" :>

 </card XE "card" >

 </def>
Merging selected parameters

Just as with merge-attrs XE "merge-attrs" , merge-params can be given a value - either a hash containing the parameters you wish to XE "to" merge, or a list of parameter names (comma separated), to be merged from the all_parameters variable.

Examples:

<card XE "card" merge-params="heading, body"> XE "card merge-params="heading, body">"

 XE "card merge-params="heading, body">"
<card XE "card" merge-params="&my_parameter_hash">
Extending a tag XE "Extending a tag"
We’ve now seen how to XE "to" easily create a new tag from an existing tag XE "create a new tag from an existing tag" . But what if we don’t actually want a new tag, but rather we want to change the behavior of an existing tag in some way, and keep the tag name XE "name" the same. What we can’t do is XE "is" simply use the existing name in the definition:

<!-- DOESN'T WORK! -->

 <def tag="card XE "card" ">

 <card XE "card" merge>

 <heading XE "heading" : param XE "param" ><%= h this.to XE "to" _s %>

 </heading XE "heading" :>

 </card XE "card" >

 </def>
All we’ve done there is XE "is" created a nice stack overflow when the card XE "card" calls itself over and over.

Fortunately, DRYML XE "DRYML" has support for extending tags. Use <extend> instead of <def>:

<extend tag="card XE "card" ">

 <old-card merge>

 <heading XE "heading" : param XE "param" ><%= h this.to XE "to" _s %>

 </heading XE "heading" :>

 </old-card>

 </extend>
The one thing to XE "to" notice there is XE "is" that the “old” version of <card XE "card" >, i.e. the one that was active before you’re extension, is available as <old-card>. That’s about all there is to it.

Here’s another example where we add a footer to XE "to" every page in our application. It’s very common to <extend tag="page"> in your application.dryml XE "application.dryml" , in order XE "order" to make changes that should appear on every page:

<extend tag="page">

 <old-page merge>

 <footer: param XE "param" >

 ...

 your custom footer here

 ...

 </footer:>

 </old-page>

</extend>
Aliasing tags

Welcome to XE "to" the shortest section of The DRYML XE "DRYML" Guide XE "DRYML Guide" …

If you want to XE "to" create an alias of a tag XE "create an alias of a tag" ; i.e., an identical tag with a different name XE "name" : XE "name:"
<def tag="my-card" alias-of XE "alias-of" ="card XE "card" "/>
Note that’s a self closing tag – there is XE "is" no body XE "body" to XE "to" the definition.

So… that’s aliasing tags then…

Polymorphic tags

DRYML XE "DRYML" allows you to XE "to" define a whole collection XE "collection" of tags that share the same name XE "name" , where each definition is XE "is" appropriate for a particular type of object being rendered. When you call the tag, the type (i.e. class) of the context XE "context" is used to determine which definition to call. These are called polymorphic XE "polymorphic" tag XE "polymorphic tag" s.

To illustrate how these work, let’s bring back our simple <card XE "card" > tag once more:

<def tag="card XE "card" " polymorphic XE "polymorphic" >

 <div class="card XE "card" " merge-attrs XE "merge-attrs" >

 <h3 param XE "param" ="heading XE "heading" "><%= h this.to XE "to" _s %></h3>

 <div param XE "param" ="body XE "body" ">

 </div>

 </div>

 </def>
We’ve added the polymorphic XE "polymorphic" attribute XE "attribute" to XE "to" the <def>. This tells DRYML XE "DRYML" that <card XE "card" > can have many definitions, each for a particular type. The definition we’ve given here is XE "is" called the “base” definition or the “base card”. The base definition serves two purposes:

· It is XE "is" the fallback if we call <card XE "card" > and no definition is found for the current type.

· The type-specific definition can use the base definition as a starting point to XE "to" be further customized.

To add a type-specific <card XE "card" >, we use the for attribute XE "attribute" on the <def>. For example, a card for a Product:

<def tag="card XE "card" " for="Product"> ... </def>
Note: if the name XE "name" in the for attribute XE "attribute" starts with an uppercase letter, is XE "is" is taken to XE "to" be a class name. Otherwise it is taken to be an abbreviated name registered with HoboFields; e.g.:

 <def tag="input" for="email_address">
For the product card XE "card" , lets make the heading XE "heading" be a link to XE "to" the product, and put the price of the product in the body XE "body" area:

<def tag="card XE "card" " for="Product">

 <card XE "card" merge>

 <heading XE "heading" : param XE "param" ><%= h this.to XE "to" _s %>

 </heading XE "heading" :>

 <body XE "body" : param XE "param" ="price">$<%= this.price %></body:>

 </card XE "card" >

</def>
We call this a type-specific definition. Some points to XE "to" notice:

· The callback to XE "to" <card XE "card" > is XE "is" not a recursive loop, but a call to the base definition.

· We’re using the normal technique for Customizing / extending an existing card XE "card" ; i.e., we’re using merge.

It is XE "is" not required for the type-specific definition to XE "to" call the base definition, it’s just often convenient. In fact the base definition is not required. It is valid to declare a polymorphic XE "polymorphic" tag XE "polymorphic tag" with no content XE "content" :

<def tag="my-tag" polymorphic XE "polymorphic" />
Type hierarchy

If, for a given call, no type-specific definition is XE "is" available for this.class, the search XE "search" continues with this.class.superclass and so on up the superclass chain. If the search reaches either ActiveRecord::Base or Object, the base definition is used.

Specifying the type explicitly

Sometimes it is XE "is" useful to XE "to" give the type explicitly for the call explicitly (i.e., to override the use of this.class). The for-type attribute XE "attribute" (on the call) provides this facility. For example, you might want to implement one type-specific definition in terms of another:

<def tag="card XE "card" " for="SpecialProduct">

 <card XE "card" for-type="Product">

 <append-price:>Today Only!)</append-price:>

 </card XE "card" >

</def>
Extending polymorphic XE "polymorphic" tag XE "polymorphic tag" s

Type-specific definitions can be extended just like any other tag using the <extend> tag. For example, here we simply remove the price:

<extend tag="card XE "card" " for="Product">

 <old-card merge without-price/>

 </extend>
Wrapping content XE "content"
DRYML XE "DRYML" provides two mechanisms for wrapping existing content XE "content" inside new tags.

Wrapping inside a parameter XE "Wrapping inside a parameter"
Once or twice in the previous examples, we have extended our card XE "card" tag definition, replacing the plain heading XE "heading" with a hyperlink heading. Here is XE "is" an example call to XE "to" our extended card tag:

<card XE "card" >

 <heading XE "heading" :><%= h this.to XE "to" _s %></heading:> </card XE "card" >
There’s a bit of repetition there – <%= h this.to XE "to" _s %> was already present in the original definition. All we really wanted to do was wrap the existing heading XE "heading" in an <a>. In this case there wasn’t much markup to repeat, so it wasn’t a big deal, but in other cases there might be much more.

We can’t use <prepend-heading:><a></prepend-heading:> and <append-heading:></append-heading:> because that’s not well formed markup (and is XE "is" very messy besides). Instead, DRYML XE "DRYML" has a specific feature for this situation. The <param-content> tag is a special tag that brings back the default content XE "content" for a parameter.

Here’s how it works:

<card XE "card" >

 <heading XE "heading" :>

 <param-content for="heading XE "heading" "/>

 </heading XE "heading" :>

</card XE "card" >
That’s the correct way to XE "to" wrap inside the parameter, so in this case the output is XE "is" :

<h3>Fried Bananas</h3>
What if we wanted to XE "to" wrap the entire <heading XE "heading" :> parameter, including the <h3> tags?

Wrapping outside a parameter XE "Wrapping outside a parameter"
For example, we might want to XE "to" give the card XE "card" a new ‘header XE "header" ’ section, that contained the heading XE "heading" , and the time the record was created, like this:

<div class="header XE "header" ">

 <h3>Fried Bananas</h3>

 <p>Created:</p>

</div>
To use DRYML XE "DRYML" terminology, what we’ve done there is XE "is" replaced the entire heading XE "heading" with some new content XE "content" , and the new content happens to XE "to" contain the original heading. So we replaced the heading, and then restored it again, which in DRYML is written:

<card XE "card" >

 <heading XE "heading" : replace>

 <div class="header XE "header" ">

 <heading XE "heading" : restore/>

 <p>Created: <%= this.created_at.to XE "to" _s(:short) %></p>

 </div>

 </heading XE "heading" :>

 </card XE "card" >
To summarize:

· To wrap content XE "content" inside a parameter, use <param-content/>
· To wrap an entire parameter, including the parameterized tag itself (the <h3> in our examples), use the replace and restore attributes XE "attributes" .

Local variables and scoped variables XE "scoped variables" .

DRYML XE "DRYML" provides two tags for setting variables: <set> and <set-scoped>.

Setting local variables with <set>
Sometimes it’s useful to XE "to" define a local variable inside a template or a tag definition. It’s worth avoiding if you can, as we don’t really want our view layer to contain lots of low-level code, but sometimes it’s unavoidable. Because DRYML XE "DRYML" extends ERB XE "ERB" , you can simply write:

<% total = price_of_fish * number_of_fish %>
For purely aesthetic reasons, DRYML XE "DRYML" provides a tag that does the same thing:

<set total="&price_of_fish * number_of_fish"/>
Note that you can put as many attribute XE "attribute" /value pairs as you like on the same <set> tag, but the order XE "order" of evaluation is XE "is" not defined.

Scoped variables – <set-scoped>
Scoped variables (which is XE "is" not a great name XE "name" , I realise as I come to XE "to" document them properly) are kind of like global variables with a limited lifespan. We all know the pitfalls of global variables, and DRYML XE "DRYML" ’s scoped variables XE "scoped variables" should indeed be used as sparingly as possible, but you can pull off some very useful tricks with them.

The <set-scoped> tag is XE "is" very much like <set> except you open it up and put DRYML XE "DRYML" inside it:

<set-scoped xyz="&..."> ... </set-scoped>
The value is XE "is" available as scope.xyz anywhere inside the tag and in any tags that are called inside that tag. That’s the difference between <set> and <set-scoped>.

They are like dynamic variables from LISP. To repeat the point, they are like global variables that exist from the time the <set-scope> tag is XE "is" evaluated, and for the duration of the evaluation of the body XE "body" of the tag, and are then removed.

As an example of their use, let’s define a simple tag for rendering navigation links. The output should be a list of <a> tags, and the <a> that represents the “current” page should have a CSS XE "CSS" class “current”, so it can be highlighted in some way by the stylesheet. (In fact, the need to XE "to" create a reusable tag like this is XE "is" where the feature originally came from).

On our pages, we’d like to XE "to" simply call, say:

 <main-nav current="Home">`
And we’d like it to XE "to" be easy to define our own <main-nav> tag in our applications:

<def tag="main-nav">

 <navigation merge-attrs XE "merge-attrs" >

 <nav-item href="...">Home</nav-item>

 <nav-item href="...">News</nav-item>

 <nav-item href="...">Offers</nav-item>

 </navigation>

 </def>
Here’s the definition for the <navigation> tag:

<def tag="navigation" attrs XE "attrs" ="current">

 <set-scoped current-nav-item="current">

 <ul XE "ul" merge-attrs XE "merge-attrs" param XE "param" ="default"/>

 </set-scoped>

</def>
All <navigation> does is XE "is" set a scoped-variable to XE "to" whatever was given as current and output the body XE "body" wrapped in a <ul XE "ul" >.

Here’s the definition for the <nav-item> tag:

<def tag="nav-item">

 <set body XE "body" ="¶meters.default"/>

 <li class="#{'current' if scope.current_nav_item == body XE "body" }">

 <a merge-attrs XE "merge-attrs" ><%= body XE "body" %>

</def>
The content XE "content" inside the <nav-item> is XE "is" compared to XE "to" scope.current_nav_item. If they are the same, the “current” class is added. Also note the way parameters.default is evaluated and the result stored in the local variable body XE "body" , in order XE "order" to avoid evaluating the body twice.

Nested scopes

One of the strengths of scoped variables XE "scoped variables" is XE "is" that scopes can be nested, and where there are name XE "name" clashes, the parent scope variable is temporarily hidden, rather than overwritten. With a bit of tweaking, we could use this fact to XE "to" extend our <navigation> tag to support a sub-menu of links within a top level section. The sub-menu could also use <navigation> and <nav-item> and the two scope.current_nav_item variables would not conflict with each other.

Taglibs

DRYML XE "DRYML" provides the <include XE "include" > tag to XE "to" support breaking up lots of tag definitions into separate “tag libraries”, known as taglibs XE "taglibs" . You can call <include> with several different formats:

<include XE "include" src="foo"/>
Load foo.dryml from the same directory as the current template or taglib.

<include XE "include" src="path/to XE "to" /foo"/>
Load app/views/path/to XE "to" /foo.dryml
<include XE "include" src="foo" plugin="path/to XE "to" /plugin"/>
Load vendor/plugins/path/to XE "to" /plugin/taglibs XE "taglibs" /foo.dryml
When running in development mode, all of these libraries are automatically reloaded on every request.

Divergences from XML XE "XML" and HTML XE "HTML"
Self-closing tags XE "Self-closing tags"
In DRYML XE "DRYML" , <foo:/> and <foo:></foo:> have two slightly different meanings.

The second form XE "form" replaces the parameter’s default inner content XE "content" with the specified content: nothing in this case.

The first form XE "form" uses the parameters default inner content XE "content" unchanged.

This is XE "is" very useful if you wish to XE "to" add an attribute XE "attribute" to a parameter but leave the inner content XE "content" unchanged. In this example:

<def tag="bar">

 <div class="container" merge-attrs XE "merge-attrs" >

 <p class="content XE "content" " param XE "param" >

 Hello

 </p>

 </div>

 <def>

 Then:

<bar><foo: class="my-foo"/></bar>
Gives:

<div class="container">

 <p class="content XE "content" my-foo">

 Hello

 </p>

 </div>
If you used:

<bar><foo: class="my-foo"></foo:></bar>
You would get:

<div class="container">

 <p class="content XE "content" my-foo"></p>

</div>
Colons in tag names XE "Colons in tag names"
In XML XE "XML" , colons are valid inside tag and attribute XE "attribute" names. However they are reserved for “experiments for namespaces”. So it’s possible that we may be non-compliant with the not-yet-existent XML 2.0.

Close tag shortcuts

In DRYML XE "DRYML" , you’re allowed to XE "to" close tags with everything preceding the colon:

<view:name XE "name" > Hello </view>
XML XE "XML" requires the full tag to XE "to" be specified:

<view:name XE "name" > Hello </view:name>
Null end tags

Self-closing tags XE "Self-closing tags" are technically illegal in HTML XE "HTML" . So
 is XE "is" technically not valid HTML. However, browsers do parse it as you expect. It is valid XHTML, though.

However, browsers only do this for empty elements. So tags such as <script> and <a> require a separate closing tag in HTML XE "HTML" . This behavior has surprised many people:

<script src="foobar.js" />

…is XE "is" not recognized in many web browsers for this reason. You must use:

 <script src="foorbar.js"></script>

 …in HTML XE "HTML" instead.

DRYML XE "DRYML" follows the XML XE "XML" conventions:

 <a/>

 …is XE "is" valid DRYML XE "DRYML" .

Hobo XE "Hobo" Rapid Tag Library XE "Rapid Tag Library"
This section of the book serves as reference for all of the pre-defined DRYML XE "DRYML" tags used by Hobo XE "Hobo" to XE "to" provide the “magic” rendering of pages and forms without you coding. You can learn how to extend and use these tags to customize your applications.

Look at the figure below that shows the contents of rapid.dryml
[image: image337.png]000 - | Chapter_05_ Hobo_Under_The_Hood_From_Owen_Macbook_2009-10-04-1.doc [Compati

Mode]

Normal [+ [rimes New. 12 = i

R ¥ [source | Rakefile | x core.dryml || % rapid.drym! | x rapid_document_tags.drym! || % rapid_core.drymi |
v [hobo .
vﬁgbn
» [bin . . " . . .
L o The Rapid tag library makes web development go fast. The Rapid tag Library is your friend.
:g:;‘y‘:ﬁ‘gmmn (This ¢ defines no tags - it just includes all the other taglibs. Move along. Nothing to see here.)
& init.rb
NE
LICENSE txt
1 Manifest | <include module="Hobo: :RapidHelper"/>
> rails_generators
2 Rakehle <include src="rapid_core"/>
2 reaoMe <include src="rapid_support"/>
» [seript <include src="rapid_document_tags"/>
v [Fraglibs <include src="rapid_pages"/>
£ core.dryml <include src="rapid_editing"/>
rapid.dryml <include src="rapid_forns"/>
1 rapid_core.drymi <include src="rapid_navigation"/>
rapld_document_tagy <include src="rapid_plus"/>
rapid_editing.dryml <include src="rapid_generics"/>
rapid_forms.dryml Dbt
rapid_genericsdrym
rapid_lifecycles.drym
rapid_navigation.df
rapid_pages.drym!
rapid_plus.drymi
1 rapid_supportdrym!
2 rapid_user_pages.d
» Brasks
> Btest
» 7 hobofelds
» [hobosupport
2 Rakefile
» Bscript
4]][22 o RIS
Lne: 7 Columm: 4 | O Plain Text S v TabSize: 4 ° — .

You see how the rapid.dryml file includes the following source files, in alphabetical order XE "order" :

rapid_core.dryml XE "rapid_core.dryml"
rapid_document_tags.dryml XE "rapid_document_tags.dryml"
rapid_pages.dryml XE "rapid_pages.dryml"

 XE "pages.dryml"
rapid_editng.dryml XE "rapid_editng.dryml"
rapid_forms.dryml XE "rapid_forms.dryml"
rapid_navigation.dryml XE "rapid_navigation.dryml"
rapid_plus.dryml XE "rapid_plus.dryml"
rapid_generics.dryml XE "rapid_generics.dryml"
rapid_lifecycles.dryml XE "rapid_lifecycles.dryml"
rapid_support.dryml XE "rapid_support.dryml"
Rapid Tag Library XE "Rapid Tag Library" Index
The following categories will be described in detail in the rest of this chapter:

	Core XE "Core"
	Core XE "Core" DRYML XE "DRYML" tags. These are included implicitly and are always available. Contains mainly control-flow tags.

	Rapid Core XE "Rapid Core"

 XE "Core"
	Core XE "Core" Rapid tags and tags that don’t belong to XE "to" other categories.

	Rapid Document Tags XE "Rapid Document Tags"
	Extra tags for semantic markup.

	Rapid Editing XE "Rapid Editing"
	Rapid Editing XE "Rapid Editing" provides “in-place” or “AJAX” editors for various basic data types.

	Rapid Forms XE "Rapid Forms"
	Rapid Forms XE "Rapid Forms" provides various tags that make it quick and easy to XE "to" produce working new or edit forms.

	Rapid Generics XE "Rapid Generics"
	Rapid Generics XE "Rapid Generics" provides tags that provide generic renderings that can adapt to XE "to" the model being rendered.

	Rapid Lifecycles XE "Rapid Lifecycles"

 XE "Lifecycles"
	Contains view-layer support for Hobo XE "Hobo" ’s lifecycles.

	Rapid Navigation XE "Rapid Navigation"
	Support for navigation links, account XE "account" navigation (log in, out etc.) and pagination navigation.

	Rapid Pages
	Rapid-Pages provides tags for working with entire pages.

	Rapid Plus
	Tags that define higher level interactive ‘widgets’

	Rapid Support
	Rapid Support is XE "is" the home for some tags that are useful in defining other tags.

	Rapid User Pages XE "Rapid User Pages"
	Rapid User Pages XE "Rapid User Pages" contains tags that implement the basics of Hobo XE "Hobo" ’s user management: log in, sign up, forgot password etc.

Core XE "Core"
Core XE "Core" DRYML XE "DRYML" tags. These are included implicitly and are always available. Contains mainly control-flow tags.

	<call-tag> XE "<call-tag>"

	<wrap> XE "<wrap>"

	<partial> XE "<partial>"

	<repeat> XE "<repeat>"

	<do> XE "<do>"

	<with> XE "<with>"

	<if> XE "<if>"

	<else XE "<else"

	<unless> XE "<unless>"

<call-tag>
Call the tag given by the tag attribute XE "attribute" . This lets you call tags dynamically based on some runtime value. It’s the DRYML XE "DRYML" equivalent of Ruby’s send method XE "method" .

<wrap>
Wrap the body XE "body" in the tag specified by the tag attribute XE "attribute" , iff when is XE "is" true.

Using regular DRYML XE "DRYML" conditional logic it is XE "is" rather akward to XE "to" conditionally wrap some tag in another tag. This tag makes it easy to do that.

Usage

For example, you might want to XE "to" wrap an tag in an <a> tag but only under certain conditions. Say the current context XE "context" has an href attribute XE "attribute" that may or may not be nil. We want to wrap the img in <a> if href is XE "is" not nil:

<wrap when="&this.href.present?" tag="a" href="&this.href">

</wrap>
<partial>
DRYML XE "DRYML" version of render(:partial => 'my_partial')
Usage

<partial name XE "name" ="my-partial" locals="&{:x => 10, :y => 20}"/>

<repeat>
Repeat a section of mark-up. The context XE "context" should be a collection XE "collection" (anything that responds to XE "to" each). The content XE "content" of the call to <repeat> will be repeated for each item in the collection, and the context will be set to each item in turn.

Attributes

· join XE "join" : The value of this attribute XE "attribute" , if given, will be inserted between each of the items (e.g. join=", " is XE "is" very common).

<do>
The ‘do nothing’ tag. Used to XE "to" add parameters or change context XE "context" without adding any markup

<with>
Alias of do
<if>
DRYML XE "DRYML" ’s ‘if’ test

Usage

<if test="¤t_user.administrtator?">Logged in as XE "Logged in as" administrator</if>

 <else>Logged in as XE "Logged in as" normal user

 </else>
IMPORTANT NOTE: <if> tests for non-blank vs. blank (as defined by ActiveSuport), not true vs. false. If you do not give the test attribute XE "attribute" , uses the current context XE "context" instead. This allows a nice trick like this:

<if:comments>...</if>
This has the double effect of changing the context XE "context" to XE "to" the this.comments, and only evaluating the body XE "body" if there are comments (because an empty collection XE "collection" is XE "is" considered blank)

<else>
General purpose else clause. <else> works with various tags such as <if> and <repeat> (the else clause will be output if the collection XE "collection" was empty). It simply outputs its content XE "content" if Hobo XE "Hobo" ::Dryml.last_if is XE "is" false. This is pretty much a crazy hack which violates many good principles of language design, but it’s very useful :)

<unless>
Same behavior as <if>, except the test is XE "is" negated.

RAPID CORE

Core XE "Core" Rapid tags and tags that don’t belong to XE "to" other categories.

	<dev-user-changer> XE "<dev-user-changer>"

	<field-list> XE "<field-list>"

	<nil-view> XE "<nil-view>" \t " nil-list"

	<table> XE "<table>"

	<image> XE "<image>"

	<spinner> XE "<spinner>"

	<hobo-rapid-javascripts> XE "<hobo-rapid-javascripts>"

	<name> XE "name"

	<type-name> XE "<type-name>"

	<collection-name> XE "<collection-name>"

	<a> XE "<a>"

	<count> XE "<count>"

	<theme-stylesheet> XE "<theme-stylesheet>"

	<You> XE "<You>"

	<Your>

	<A-or-An> XE "<A-or-An>"

	<comma-list> XE "<comma-list>"

	<collection-list> XE "<collection-list>"

	<collection-view> XE "<collection-view>"

	 XE "<links-for-collection>" <links-for-collection>

	 XE "<view>" <view>

<dev-user-changer XE "dev-user-changer" >
Development mode only - a menu to XE "to" change the current_user
<field-list XE "field-list" >
Renders a table with one row per field, where each row contains a <th> with the field name XE "name" , and a <td> with (by default) a <view> of the field.

Parameters

· #{this_field XE "this_field" .to XE "to" _s.sub('?', '')}-label

· label XE "label"

· #{this_field XE "this_field" .to XE "to" _s.sub('?', '')}-view

· view

· #{this_field XE "this_field" .to XE "to" _s.sub('?', '')}-tag

· input-help

Attributes

· fields: Comma separated list of field names to XE "to" display. Defaults to the fields returned by the standard_fields helper. That is XE "is" , all fields apart from IDs and timestamps XE "timestamps" .

· force-all XE "force-all" : All non-viewable fields will be skipped unless this attribute XE "attribute" is XE "is" given

· skip XE "skip" : Comma separated list of fields to XE "to" exclude

· tag: The name XE "name" of a tag to XE "to" use inside the <td> to display the value. Defaults to view
· show-non-editable: By default, if tag is XE "is" set to XE "to" input, fields for which the current user does not have edit permission will be skipped (the entire row is skipped). Set this attribute XE "attribute" to keep them. (Note that <input> automatically degrades to <view> if the user does not have edit permission.)

<nil-view>
Used to XE "to" render nil values. By default renders “(Not Available)”

Usage

Redefine in your app to XE "to" have nil values displayed differently, e.g.:

<def tag="nil-view">-</def>
<table>
<table> is XE "is" extended in Rapid to XE "to" provide a shorthand way to output a set of fields for a given collection XE "collection" . This is enabled using the field attribute XE "attribute" (without the field attribute this is just the regular HTML XE "HTML" <table> tag)

Parameters

· thead XE "thead"

· field-heading-row XE "field-heading-row"

· #{scope.field_name XE "name" }-heading

· tbody XE "tbody"

· tr XE "tr"

· #{this_field XE "this_field" .to XE "to" _s.sub('?', '').gsub('.', '-')}-view

· controls XE "controls"

· edit-link XE "edit-link"

· delete-button XE "delete-button"

· tfoot XE "tfoot"

Usage

If the context XE "context" is XE "is" an array of blog posts…

<table fields="name XE "name" , created_at, description"/>
This will output a header XE "header" row containing “Name”, “Created At” and “Description” followed by a row for each record in the collection XE "collection" . By default, the <view/> tag is XE "is" called for each field in the row. This can be altered with the field-tag attribute XE "attribute" , e.g.

<table fields="name XE "name" , created_at, description" field-tag="input"/>
This will use <input/> as the tag in each table cell instead of <view/>
Additional Notes

· <table> provides parameters based on the names of the fields which can be used to XE "to" further customize the output. For each field a heading XE "heading" parameter is XE "is" provided, e.g. name-heading, created-at-heading, description-heading. These can be used to customize the headings:

 <table fields="name XE "name" , created_at, description">

 <created-at-heading:>Creation Date</created-at-heading:>

 </table>
· Similarly, “view” parameters are provided as an additional way to XE "to" customize the table cells of the table body XE "body" , e.g. name-view, created-at-view, description-view:

 <table fields="name XE "name" , created_at, description">

 <created-at-view:><view format XE "format" ="%d %B %Y"/>

 </created-at-view:>

 </table>
· By adding an empty control parameter, the default control column is XE "is" enable adding an edit link and delete button for each table row:

 <table fields="name XE "name" , created_at, description">

 <controls XE "controls" :/>

 </table>
The controls XE "controls" can be further customized using the “edit-link XE "edit-link" ” and “delete-button XE "delete-button" ” parameters or by providing completely new content XE "content" for the control column, e.g:

 <table fields="name XE "name" , created_at, description">

 <controls XE "controls" :>my controls!</controls:>

 </table>
<image> XE "<image>"
Provides a short-hand way of displaying images in public/images

Usage

<image src="hobo.png"/>
 ->

<image src="blog/funny.jpg" alt="Funny Scene"/>
 ->
<spinner> XE "<spinner>"
Renders an AJAX-progress XE "AJAX-progress" ‘spinner’ using spinner.gif from the current theme XE "theme" , with a class='hidden'
<hobo-rapid-javascripts> XE "<hobo-rapid-javascripts>"
Renders some standard JavaScript code that various features of the Rapid library rely on. This tag would typicallu be called from your <page> tag. The default Rapid pages include XE "include" this already.

<name XE "name" >
Renders the name XE "name" of the current context XE "context" using a variety of methods.

Details

· Equivalent to XE "to" <nil-view> if this is XE "is" nil

· Equivalent to XE "to" <count> if this is XE "is" an Array

· Equivalent to XE "to" <type-name> XE "<type-name>" if this is XE "is" a class

· If the context XE "context" has a name XE "name" _attribute XE "attribute" defined, equivalent to XE "to" <view:abc/> (where abc is XE "is" the name attribute)

· Finally falls back to XE "to" this.to_s (html escaped), but only if the user has view permission for this
Attributes

· if-present XE "if-present" : if given, nothing at all will be rendered for nil values (as opposed to XE "to" rendering <nil-view>)

<name> XE "<name>"
Renders the name XE "name" of the current context XE "context" using a variety of methods.

Details

· Equivalent to XE "to" <nil-view> if this is XE "is" nil

· Equivalent to XE "to" <count> if this is XE "is" an Array

· Equivalent to XE "to" <type-name> XE "<type-name>" if this is XE "is" a class

· If the context XE "context" has a name XE "name" _attribute XE "attribute" defined, equivalent to XE "to" <view:abc/> (where abc is XE "is" the name attribute)

· Finally falls back to XE "to" this.to_s (html escaped), but only if the user has view permission for this
Attributes

· if-present XE "if-present" : if given, nothing at all will be rendered for nil values (as opposed to XE "to" rendering <nil-view>)

<type-name> XE "<type-name>"
Renders a human readable version of the type of the context XE "context"
Details

· If this is XE "is" already a class, the name XE "name" of that class is used

· Otherwise, first this.member_class (for collections), then this.class are tried

· By default the name XE "name" is XE "is" titleised and singular.

Attributes

· plural XE "plural" : pluralise the name XE "name"
· lowercase XE "lowercase" : render the name XE "name" in all lower case

· dasherize XE "dasherize" : render the name XE "name" in lower case with dashes instead of spaces.

<collection-name> XE "<collection-name>"
Renders a human readable name XE "name" of a collection XE "collection"
Details

· Uses this.origin_attribute XE "attribute" as the name XE "name" .

· Falls back to XE "to" <type-name> XE "<type-name>" otherwise.

· By default the name XE "name" is XE "is" titleised and plural XE "plural" .

Attributes

· singular: singularise the name XE "name"
· lowercase XE "lowercase" : render the name XE "name" in all lower case

· dasherize XE "dasherize" : render the name XE "name" in lower case with dashes instead of spaces.

<a> XE "<a>"
<a> is XE "is" extended in Rapid to XE "to" automatically provide URLs for Hobo XE "Hobo" model routes

Usage

The tag behaves as a regular HTML XE "HTML" link or anchor if either the href or name XE "name" attribute XE "attribute" is XE "is" given:

Admin -> Output is XE "is" exactly as provided, untouched by Rapid
If no href or name XE "name" is XE "is" given then the context XE "context" is used to XE "to" determine the link URL. The helper method XE "method" object_url is used to construct the URL using restful routing:

If the context XE "context" is XE "is" a class then the link will be an index page:

My Blog -> My Blog
If the context XE "context" is XE "is" a hobo model instance then the link will be a show page:

<% blog_post = BlogPost.find(1) %> My Blog Post -> My Blog Post
An action XE "action" can be provided for an alternative show page:

Edit Post -> Edit Post
Or a new page if the context XE "context" is XE "is" a class:

New Blog Post -> New Blog Post
Additional Features

· If the constructed route does not exist then the link will not be created, but the content XE "content" of the link will still be output. E.g. when /blog_posts does not exist (because the hobo model controller does not exist or the index action XE "action" is XE "is" disabled):

My Blog -> My Blog
when the show action XE "action" /blog_posts/:id does not exist:

 My Blog Post -> My Blog Post
· If no content XE "content" text is XE "is" provided then <a> will use the name XE "name" method XE "method" on the context XE "context" to XE "to" provide the text. E.g.

-> My First Blog Post`

-> Blog Posts`
· If action XE "action" ="new" then <a> will check that the current user has permission to XE "to" create the object

· Several useful classes are added automatically to XE "to" the output <a>.

Attributes

· action XE "action" : If “new”, triggers the special behavior listed above. Otherwise, contains the action to XE "to" be performed on the context XE "context" . If neither action nor method XE "method" are specified, the action will be “index” or “show”, as appropriate.

· to XE "to" : Use this item as the target instead of the current context XE "context" .

· params XE "params" , query-params XE "query-params" : These are appended to XE "to" the target as a query string after a ”?”.

· href, name XE "href, name"

 XE "name" : If either of these attributes XE "attributes" are present, the smart features of this tag are turned off.

· format XE "format" : this adds “.#{format}” to XE "to" the end of the url

· sub-site: routes the URL using the sub-site

· force XE "force" : overrides the permission check if action XE "action" is XE "is" “new”

· method XE "method" : “get”, “put”, “post” or “delete”. “get” is XE "is" the default

<count> XE "<count>"
A convenience tag used to XE "to" output a count and a correctly pluralised label XE "label" . Works with any kind of collection XE "collection" such as an ActiveRecord association or an array.

Usage

<count:comments/> -> 1 Comment

<count:viewings/> -> 3 Viewings
The label XE "label" can be customized using the label attribute XE "attribute" , e.g.

<count:comments label XE "label" ="blog post comment"/>

-> 12 blog post comments
Additional Notes

· Use the prefix attribute XE "attribute" to XE "to" insert words before the count. If the prefix is XE "is" “are” or “is” then it will be pluralised if needed:

 There <count:comments prefix="are"/> -> There is XE "is" 1 Comment

 There <count:viewings prefix="are"/> -> There are 3 Viewings
· Use the lowercase XE "lowercase" attribute XE "attribute" to XE "to" force XE "force" the generated label XE "label" to be lowercase:

 <count:comments lowercase XE "lowercase" /> -> 1 comment
· Use the if-any attribute XE "attribute" to XE "to" output nothing if the count is XE "is" zero. This can be followed by an <else> tag to handle the empty case:

<count:comments if-any/><else>There are no comments</else>
<theme-stylesheet> XE "<theme-stylesheet>"
Renders a <link rel="Stylesheet" type="text/css"> to XE "to" include XE "include" the default stylesheet for the selected theme XE "theme" (select with <set-theme>). Included in the default pages.

<You> XE "<You>"
Equivalent to XE "to" <you titleize/>. Yes it’s an abuse of Ruby naming conventions, but it’s so cute.

<Your> XE "<Your>"
Capitalised versin of <your>
Parameters

· default

<A-or-An> XE "<A-or-An>"
Capitalizd version of <a-or-an>
<comma-list> XE "<comma-list>"
Renders a collection XE "collection" of string joined with “, “, or some other string passed in the join XE "join" attribute XE "attribute"
<view> calls this tag when called for a has_many XE "has_many" collection XE "collection" . By default calls:

 <links-for-collection/>
<links-for-collection> XE "<links-for-collection>"
Renders a comma separated list of links (<a>), or “(none)” if the list is XE "is" empty

<view> XE "<view>"
Provides a read-only view tailored to XE "to" the type of the object being viewed. <view> is XE "is" a polymorphic XE "polymorphic" tag XE "polymorphic tag" which means that there are a variety of definitions, each one written for a particular type. For example there are views for Date, Time, Numeric, String and Boolean. The type specific view is enclosed in a wrapper tag (typically a or <div>) with some useful classes automatically added.

Usage

Assuming the context XE "context" is XE "is" a blog post…

· Viewing a DateTime field:

 <view:created_at/> -> June 09, 2008 15:36
· Viewing a String field:

<view:title/>

 -> My First Blog Post
· Viewing an Integer field:

<view:comment_count/>

-> 4
· Viewing the blog post itself results in a link to XE "to" the blog post (using Rapid’s <a> tag):

<view/>

 -> My First Blog Post
Additional Notes

· The wrapper tag is XE "is" unless the field type is Text (different to XE "to" String) where it is <div>. Use the inline or block attributes XE "attributes" to force XE "force" a or a <div>, e.g:

<view:body XE "body" />

 -> <div class="view blog-post-body">This is XE "is" my blog post body XE "body" </div>

 <view:body XE "body" inline/>

 -> This is XE "is" my blog post body XE "body"

<view:created_at block/>

 -> <div class="view blog-post-created-at">June 09, 2008 15:36</div>
· Use the no-wrapper attribute XE "attribute" to XE "to" remove the wrapper tag completely. e.g.

 <view:created_at no-wrapper/> -> June 09, 2008 15:36
<view for='ActiveRecord::Base'>
Renders a link (<a>) to XE "to" this
<view for='Date'>
Renders this.to XE "to" _s(:long), or this.strftime(format XE "format") if the format attribute XE "attribute" is XE "is" given

<view for='Time'>
Renders this.to XE "to" _s(:long), or this.strftime(format XE "format") if the format attribute XE "attribute" is XE "is" given

<view for='ActiveSupport::TimeWithZone'>
Renders this.to XE "to" _s(:long), or this.strftime(format XE "format") if the format attribute XE "attribute" is XE "is" given

<view for='Numeric'>
Renders this.to XE "to" _s, or format XE "format" % this if the format attribute XE "attribute" is XE "is" given

<view for='string'>
Renders this with HTML XE "HTML" escaping and newlines replaced with
 tags

<view for='boolean'>
Renders ‘Yes’ for true and ‘No’ for false

Rapid Document Tags XE "Rapid Document Tags"
Extra tags for semantic markup.

	 XE "<section-group>" <section-group>

	<section> XE "<section>"

	<aside> XE "<aside>"

	<header> XE "<header>"

	<footer> XE "<footer>"

<section-group> XE "<section-group>"
Used as a semantic wrapper around a group of sections and asides. CSS XE "CSS" layouts can be provided based on this structure.

Parameters

· default

Usage

<section-group>
 <section>My First Section</section>
 <section>My Second Section</section>
 <aside>My Aside</aside>
 </section-group>
<section> XE "<section>"
A proposed HTML XE "HTML" 5 tag for representing a generic document or application section. Slightly more semantic than <div> for indicating document structure. For the time being, <section> is XE "is" output as <div class="section">. In Hobo XE "Hobo" , <section> also has one other important behavior which is different to XE "to" using <div> directly, when the content XE "content" of the section is empty, the wrapper tag will disappear. e.g:

 <section>My Section</section>

 <div class="section">My Section</div>

<section><% # empty %></section> -> (nothing is XE "is" generated)
<aside> XE "<aside>"
A proposed HTML XE "HTML" 5 semantic tag. Outputs <div class="aside"> and works in the same way as <section> with empty content XE "content" .

<header> XE "<header>"
A proposed HTML XE "HTML" 5 semantic tag. Outputs <div class="header XE "header" "> and works in the same way as <section> with empty content XE "content" .

<footer> XE "<footer>"
A proposed HTML XE "HTML" 5 semantic tag. Outputs <div class="footer"> and works in the same way as <section> with empty content XE "content" .

Rapid Editing XE "Rapid Editing"
Rapid Editing XE "Rapid Editing" provides “in-place” or “AJAX” editors for various basic data types.

This area of Hobo XE "Hobo" has had less attention that the non-AJAX forms of late, so it’s lagging a little. There may be some rough edges. For example, the tags in this library do not (yet!) support the full set of AJAX attributes XE "attributes" supported by <form XE "form" >, <update-button> etc.

	<has-many-editor> XE "<has-many-editor>"

	<belongs-to-editor> XE "<belongs-to-editor>"

	<select-one-editor> XE "<select-one-editor>"

	<string-select-editor> XE "<string-select-editor>"

	<boolean-checkbox-editor> XE "<boolean-checkbox-editor>"

	<integer-select-editor> XE "<integer-select-editor>"

	<editor> XE "<editor>"

<has-many-editor> XE "<has-many-editor>"
Not implemented - you just get links to XE "to" the items in the collection XE "collection"
<belongs-to-editor> XE "<belongs-to-editor>"
Polymorphic hook for defining type specific AJAX editors for belongs_to XE "belongs_to" associations XE "associations" . The default is XE "is" <select-one-editor>
<select-one-editor> XE "<select-one-editor>"
Provides a <select> menu with an AJAX callback to XE "to" update XE "update" a belongs_to XE "belongs_to" relationship when changed XE "changed" . By default the menu contains every record in the target model’s table.

Attributes

· include-none: Should the menu include XE "include" a “none” option (true/false). Defaults: false, or true if the association is XE "is" nil at render-time.

· blank-message: The text for the “none” option. Default: “(No Product)” (or whatever the model name XE "name" is XE "is")

· sort: Sort the options XE "options" (true/false)? Default: false

· update XE "update" : one or more DOM ID’s (comma separated string or an array) to XE "to" be updated as part of the AJAX call.

NOTE: yes that’s DOM ID’s not part-names. A common source of confusion because by default the part name XE "name" and DOM ID are the same.

<string-select-editor> XE "<string-select-editor>"
Provides a <select> menu with an AJAX callback to XE "to" update XE "update" a string field when changed XE "changed" .

Attributes

· values: The values for the menu options XE "options" . Required

· Labels: A hash that can be used to XE "to" customize the labels for the menu. Any value that does not have a corresponding key in this hash will have its label XE "label" generated by value.titleize
· titleize: Set to XE "to" false to have the default labels be the same as the values. Default: true - the labels are generated by value.titleize
· update XE "update" : one or more DOM ID’s (comma separated string or an array) to XE "to" be updated as part of the AJAX call.

NOTE: yes that’s DOM ID’s not part-names. A common source of confusion because by default the part name XE "name" and DOM ID are the same.

<boolean-checkbox-editor> XE "<boolean-checkbox-editor>"
A checkbox with an AJAX callback to XE "to" update XE "update" a boolean field when clicked.

Attributes

· update XE "update" : one or more DOM ID’s (comma separated string or an array) to XE "to" be updated as part of the AJAX call.

NOTE: yes that’s DOM ID’s not part-names. A common source of confusion because by default the part name XE "name" and DOM ID are the same.

· message: A message to XE "to" display in the AJAX-progress XE "AJAX-progress" spinner. Default: “Saving…”

<integer-select-editor> XE "<integer-select-editor>"
Provides a <select> menu with an AJAX callback to XE "to" update XE "update" an integer field when changed XE "changed" .

Attributes

· min: The minimum end of the range of numbers to XE "to" include XE "include"
· max: A male name XE "name" , short for Maximilian

· options XE "options" : An array of numbers to XE "to" use if min..max is XE "is" not enough for your needs.

· nil-option: Label to XE "to" give if the current value is XE "is" nil. Default: “Choose a value”

· message: A message to XE "to" display in the AJAX-progress XE "AJAX-progress" spinner. Default: “Saving…”

· update XE "update" : one or more DOM ID’s (comma separated string or an array) to XE "to" be updated as part of the AJAX call.

NOTE: yes that’s DOM ID’s not part-names. A common source of confusion because by default the part name XE "name" and DOM ID are the same.

<editor> XE "<editor>"
Polymorphic tag that selects an appropriate in-place-editor according to XE "to" the type of the thing being edited. <edit> will first perform a permission check and will call <view> instead if edit permission is XE "is" not available.

<editor for='HoboFields::EnumString'>
Provides an editor that uses a <select> menu. Uses the <string-select-editor> tag.

<def tag='editor' for='HoboFields::EnumString'>

 <string-select-editor merge values='&this_type.values'/>

</def>
<editor for='string'>
Provides a simple Scriptaculous in-place-editor that uses an <input type='text'>
<def tag='editor' for='string'><%= in_place_editor attributes %></def>
<editor for='text'>
Provides a simple Scriptaculous in-place-editor that uses a <textarea>
<def tag='editor' for='text'><%= in_place_editor attributes %></def>
<editor for='html'>
Provides a simple Scriptaculous in-place-editor that uses a <textarea>. A JavaScript hook is XE "is" available in order XE "order" to XE "to" replace the simple textarea with a rich-text editor. For an example, see the hoboyui plugin

<def tag='editor' for='html'><%= in_place_editor attributes %></def>
<editor for='datetime'>
Provides a simple Scriptaculous in-place-editor that uses an <input type='text'>
<def tag='editor' for='datetime'><%= in_place_editor attributes %></def>
<editor for='date'>
Provides a simple Scriptaculous in-place-editor that uses an <input type='text'>
<def tag='editor' for='date'><%= in_place_editor attributes %></def>
<editor for='integer'>
Provides a simple Scriptaculous in-place-editor that uses an <input type='integer'>
<def tag='editor' for='integer'><%= in_place_editor attributes %></def>
<editor for='float'>
Provides a simple Scriptaculous in-place-editor that uses an <input type='text'>
<def tag='editor' for='float'><%= in_place_editor attributes %></def>
<editor for='password'>
Raises an error - passwords cannot be edited in place

<def tag='editor' for='password'><% raise HoboError, "passwords cannot be edited in place" %></def>
<editor for='boolean'>
calls <boolean-checkbox-editor>
<def tag='editor' for='boolean'><boolean-checkbox-editor merge-attrs/></def>
<editor for='big_integer'>
Provides a simple Scriptaculous in-place-editor that uses an <input type='text'>
<def tag='editor' for='big_integer'><%= in_place_editor attributes %></def>
<editor for='BigDecimal'>
Provides a simple Scriptaculous in-place-editor that uses an <input type='BigDecimal'>
<def tag='editor' for='BigDecimal'><%= in_place_editor attributes %></def>
Rapid Forms XE "Rapid Forms"
Rapid Forms XE "Rapid Forms" provides various tags that make it quick and easy to XE "to" produce working new or edit forms.
	<or-cancel> XE "<or-cancel>"

	<form> XE "<form>"

	<submit> XE "<submit>"

	<remote-method-button> XE "<remote-method-button>"

	<update-button> XE "<update-button>"

	<delete-button> XE "<delete-button>"

	 XE "<create-button>" <create-button>

	<select-one> XE "<select-one>"

	<name-one> XE "<name-one>"

	<select-input> XE "<select-input>"

	<error-messages> XE "<error-messages>"

	<select-many XE "<select-many" >

	<after-submit> XE "<after-submit>"

	<select-menu> XE "<select-menu>"

	<check-many> XE "<check-many>"

	<hidden-id-field> XE "<hidden-id-field>"

	<input-many> XE "<input-many>"

	<input-all XE "<input-all" >

	<input> XE "<input>"

	<collection-input> XE "<collection-input>"

<or-cancel> XE "<or-cancel>"
Renders the common “or (Cancel)” for a form XE "form" . Attributes are merged into the link (<a>Cancel), making it easy to XE "to" customize the destination of the cancel link. By default it will link to this or this.class.

<form> XE "<form>"
<form XE "form" > has been extended in Rapid to XE "to" make it easier to construct and use forms with Hobo XE "Hobo" models. In addition to the base <form> tag, a form with contents is XE "is" generated for each Hobo model. These are found in app/views/taglibs XE "taglibs" /auto/rapid/forms.dryml.

Usage

<form XE "form" > can be used as a regular HTML XE "HTML" tag:

 <form XE "form" action XE "action" ="/blog_posts/1" method XE "method" ="POST">

...

</form XE "form" >
If no action XE "action" attribute XE "attribute" is XE "is" provided then the context XE "context" is used to XE "to" construct an appropriate action using restful routing:

· If the context XE "context" is XE "is" a new record then the form XE "form" action XE "action" will be a POST to XE "to" the create action:

 <form XE "form" with="&BlogPost.new">...</form>

<form XE "form" action XE "action" ="/blog_posts" method XE "method" ="POST">...</form>

· If the context XE "context" is XE "is" a saved record then the form XE "form" action XE "action" will be a PUT to XE "to" the update XE "update" action. This is handled in a special way by Rails due to current browsers not supporting PUT, the method XE "method" is set to POST with a hidden input called _method with a value of PUT. Hobo XE "Hobo" adds this automatically:

 <% blog_post = BlogPost.find(1) %>

 <form XE "form" with="&blog_post">

...

 </form XE "form" >

<form XE "form" action XE "action" ="/blog_posts/1" method XE "method" ="POST">

 <input id="_method XE "method" " type="hidden" value="PUT" name XE "name" ="_method"/> ...

</form XE "form" >
AJAX based submission can be enabled by simply adding an update XE "update" attribute XE "attribute" . e.g.

 <div part="comments"><collection XE "collection" :comments/></div>

 <form XE "form" with="&Comment.new" update XE "update" ="comments"/>

<form XE "form" > support all of the standard AJAX attributes XE "attributes" .

Additional Notes

· Hobo XE "Hobo" automatically inserts an auth_token hidden field if forgery protection is XE "is" enabled

· Hobo XE "Hobo" inserts a page_path hidden field in create / update XE "update" forms which it uses to XE "to" re-render the correct page if a validation error occurs.

· <form XE "form" > supports all of the standrd AJAX attributes XE "attributes" - (see the main taglib docs for Rapid Forms XE "Rapid Forms")

Attributes

· reset-form: Clear the form XE "form" after submission (only makes sense for AJAX forms)

· refocus-form: Refocus the first form-field after submission (only makes sense for AJAX forms)

<submit> XE "<submit>"
A shortcut for generating a submit XE "submit" button.

Usage
<submit XE "submit" label XE "label" ="Go!"/>

<input type="submit XE "submit" " value="Go!" class="button submit-button"/>

<submit XE "submit" image="/images/go.png"/>

 -> <input type="image" src="/images/go.png" class="button submit-button"/>
<remote-method-button> XE "<remote-method-button>"
Provides either an AJAX or non-AJAX button to XE "to" invoke a “remote method XE "method" ” or “web method” declared in the controller. Web Methods provide support for the RPC model of client-server interaction, in contrast to the REST model. The preference in Rails is XE "is" to use REST as much as possible, but we are pragmatists, and sometimes you just to need a remote procedure call.

The URL that the call is XE "is" POSTed to XE "to" is the object_url of this, plus the method XE "method" name XE "name"
<remote-method-button> supports all of the standard AJAX attributes XE "attributes" (see the main taglib documention for Rapid Forms XE "Rapid Forms"). If any AJAX attributes are given, the button becomes an AJAX button. If not, it causes a normal form XE "form" submission and page reload.

Attributes

· method XE "method" : the name XE "name" of the web-method to XE "to" call

· label XE "label" : the label on the button

<update-button> XE "<update-button>"
Provides an AJAX button to XE "to" send a RESTful update XE "update" or “PUT” to the server. i.e., to update one or more fields of a record. Note that unlike simliar tags, <update-button> does not support both AJAX and non-AJAX modes at this time. It only does AJAX. <update-button> supports all of the standard AJAX attributes XE "attributes" (see the main taglib documention for Rapid Forms XE "Rapid Forms").

Attributes

· label XE "label" : The label on the button.

· fields: A hash with new field values pairs to XE "to" update XE "update" the resource with. The items in the hash will be converted to HTTP parameters.

· params XE "params" : Another hash with additional HTTP parameters to XE "to" include XE "include" in the AJAX request

<delete-button> XE "<delete-button>"
Provides either an AJAX or non-AJAX delete button to XE "to" send a RESTful “DELETE”. The context XE "context" should be a record for which you to want provide a delete button.

The Rapid Library has a convention of marking (in the output HTML XE "HTML" , using a special CSS XE "CSS" class) elements as “object elements”, with the class and ID of the ActiveRecord object that they represent. <delete-button XE "delete-button" > assumes it is XE "is" placed inside such an element, and will automatically find the right element to XE "to" remove (fade out) from the DOM. The <collection XE "collection" > tag adds this metadata (CSS class) automatically, so <delete-button> works well when used inside a <collection>. This is a Clever Trick which needs to be revisted and perhaps simplified.

If used within a <collection XE "collection" >, <delete-button XE "delete-button" > also knows how to XE "to" add an “empty message” such as “no comments to display” when you delete the last item. Clever Tricks abound.

Current limitation: There is XE "is" no support for the AJAX callbacks at this time.

All the standard AJAX attributes XE "attributes" except the callbacks are supported (see the main taglib documentation for Rapid Forms XE "Rapid Forms").

Attributes

· label XE "label" : The label for the button. Default: “Remove”

· in-place: delete in place (AJAX)? Default: true, or false if the record to XE "to" be deleted is XE "is" the same as the top level context XE "context" of the page

· image: URL of an image for the button. Changes the rendered tag from <input type='button'> to XE "to" <input type='image' src='...'>
· fade: Perform the fade effect (true/false)? Default: true

<create-button> XE "<create-button>"
Provides an AJAX create button that will send a RESTful “POST” to XE "to" the server to create a new resource. All of the standard AJAX attributes XE "attributes" are supported (see the main taglib documention for Rapid Forms XE "Rapid Forms").

Attributes

· model: The class to XE "to" instantiate, pass either the class name XE "name" or the class object.

<select-one> XE "<select-one>"
A <select> menu from which the user can choose the target record for a belongs_to XE "belongs_to" association. This is XE "is" the default input that Rapid uses for belongs_to XE "to" associations XE "associations" . The menu is constructed using the to_s representation of the records.

Attributes

· include-none - whether to XE "to" include XE "include" a ‘none’ option (i.e. set the foreign key to null). Defaults to false

· blank-message - the message for the ‘none’ option. Defaults to XE "to" “(No <model-name>)”, e.g. “(No Product)”

· options XE "options" - an array of records to XE "to" include XE "include" in the menu. Defaults to the all the records in the target table that match any :conditions declared on the belongs_to XE "belongs_to" (subject to limit XE "limit")

· limit XE "limit" - if options XE "options" is XE "is" not specified, this limits the number of records. Default: 100

· text_method XE "method" - The method to XE "to" call on each record to get the text for the option. Multiple methods are supported ie “institution.name XE "name" ”

See Also

For situations where there are too many target records to XE "to" practically include XE "include" in a menu, <name-one> provides an autocompleter which would be more suitable.

<name-one> XE "<name-one>"
An <input type="text"> with auto-completion. Allows the user to XE "to" chose the target of a belongs_to XE "belongs_to" association by name XE "name" . This tag relies on an autocompleter being defined in a controller. A simple example:

<form XE "form" with="&ProjectMembership.new">

 <name-one:user>

 </form XE "form" >

 class ProjectMembership < ActiveRecord::Base

 hobo_model XE "hobo_model"
 belongs_to XE "belongs_to" :user

 end

class User < ActiveRecord::Base

 hobo_user_model XE "hobo_user_model"
 has_many XE "has_many" :project_memberships, :accessible => true, :dependent => :destroy end

class UsersController < ApplicationController

 autocomplete XE "autocomplete"
end
The route used by the autocompleter looks something like /users/complete_name XE "name" . The first part of this route is XE "is" specified by the complete-target attribute XE "attribute" , and the second part is specified by the completer attribute.

complete-target specifies the controller for the route. It can be specified by either supplying a model class or a model. If a model is XE "is" supplied, the id of the model is passed as a parameter to XE "to" the controller. (?id=7, for example) The default for this attribute XE "attribute" is the class of the context XE "context" . In other words, the class that contains the has_many XE "has_many" / has_one, not the class with the belongs_to XE "belongs_to" .

completer specifies the action XE "action" for the route. name-one prepends complete_ to XE "to" the value given here. This should be exactly the same as the first parameter to autocomplete XE "autocomplete" in your controller. As an example: autocomplete :email_address would correspond to completer="email_address". The default for this attribute XE "attribute" is XE "is" the name XE "name" field for the model being searched, which is usually name, but not always. The query string is passed to the controller in the query parameter. (?query=hello for example).

<select-input> XE "<select-input>"
A <select> menu input. This tag differes from <select-menu> only in that it adds the correct name XE "name" attribute XE "attribute" for the current field, and selected default to XE "to" this.

Attributes

· options XE "options" - an array of options suitable to XE "to" be passed to the Rails options_for_select helper.

· selected - the value (from the options XE "options" array) that should be initially selected. Defaults to XE "to" this
· first-option - a string to XE "to" be used for an extra option in the first position. E.g. “Please choose…”

· first-value - the value to XE "to" be used with the first-option. Typically not used, meaning the option has a blank value.

<error-messages> XE "<error-messages>"
Renders a readable list of error messages following a form XE "form" submission. Expects the errors to XE "to" be in this.errors. Renders nothing if there are no errors.

Parameters

· heading XE "heading"

· ul XE "ul"

· li

<select-many> XE "<select-many>"
An input for has_many XE "has_many" :through associations XE "associations" that lets the user chose the items from a <select> menu.

To use this tag, the model of the items the user is XE "is" chosing must have unique names, and the

Parameters

· proto-item

· proto-hidden

· proto-remove-button

· item

· hidden

· remove-button

<after-submit> XE "<after-submit>"
Used inside a form XE "form" to XE "to" specify where to redirect after successful submission. This works by inserting a hidden field called after_submit XE "submit" which is XE "is" used by Hobo XE "Hobo" if present to perform a redirect after the form submission.

Usage

Use the stay-here attribute XE "attribute" to XE "to" remain on the current page:

<form XE "form" > <after-submit stay-here/> ... </form>
Use the go-back option to XE "to" return to the previous page:

<form XE "form" > <after-submit go-back/> ... </form>
Use the uri option to XE "to" specify a redirect location:

<form XE "form" > <after-submit uri="/admin"/> ... </form>
<select-menu> XE "<select-menu>"
A simple wrapper around the <select> tag and options XE "options" _for_select helper

Parameters

· default

· options XE "options"

Attributes

· options XE "options" - an array of options suitable to XE "to" be passed to the Rails options_for_select helper.

· selected - the value (from the options XE "options" array) that should be initially selected. Defaults to XE "to" this
· first-option - a string to XE "to" be used for an extra option in the first position. E.g. “Please choose…”

· first-value - the value to XE "to" be used with the first-option. Typically not used, meaning the option has a blank value.

<check-many> XE "<check-many>"
Renders a <ul XE "ul" > list of checkboxes, one for each of the potential targt in a has_many XE "has_many" association. The user can check the items they wish to XE "to" have associated. A typical use might be selecting categories for a blog post.

Parameters

· default

· li

· name XE "name"

Attributes

· options XE "options" - an array of models that may be added to XE "to" the collection XE "collection"
· disabled - if true, sets the disabled flag on all check boxes.

<hidden-id-field> XE "<hidden-id-field>"
Renders an <input type='hidden'> for the id field of the current context XE "context"
<input-many> XE "<input-many>"
Creates a sub-section of the form XE "form" which the user can repeat using (+) and (-) buttons, in order XE "order" to XE "to" allow an entire has_many XE "has_many" collection XE "collection" to be created/edited in a single form. This tag is XE "is" very different from tags like <select-many> and <check-many> in that:

· Those tags are used to XE "to" chose existing records to include XE "include" in the assocaition, while <input-many> is XE "is" used to actually create or edit the records in the association.

Parameters

· default

· remove-item

· add-item

· default

· add-item

Example

Say you are creating a new Category in your online shop, and you want to XE "to" create some initial products in the same form XE "form" , you can add the following to your form:

<input-many:products><field-list XE "field-list" fields="name XE "name" , price"/></input-many>
The body XE "body" of the tag will be repeated for each of the current records in the collection XE "collection" , or will just appear once (with blank fields) if the colleciton is XE "is" empty.

Attributes

· fields: If you do not specify any content XE "content" for the input-many, a <field-list XE "field-list" > is XE "is" rendered. This attribute XE "attribute" is passed through to XE "to" the <field-list>
<input-all> XE "<input-all>"
Renders a sub-section of a form XE "form" with fields for every record in a has_many XE "has_many" association. This is XE "is" similar to XE "to" <input-many> except there is no ability to add and remove items (i.e. no (+) and (-) buttons).

<input> XE "<input>"
Provides an editable control tailored to XE "to" the type of the object in context XE "context" . <input> tags should be used within a <form XE "form" >. <input> is XE "is" a polymorphic XE "polymorphic" tag XE "polymorphic tag" which means that there are a variety of definitions, each one written for a particular type. For example there are inputs for text, boolean, password, date, datetime, integer, float, string and more.

Usage

The tag behaves as a regular HTML XE "HTML" input if the type attribute XE "attribute" is XE "is" given:

<input type="text" name XE "name" ="my_input"/>

 -> Output is XE "is" exactly as provided, untouched by Rapid
If no type attribute XE "attribute" is XE "is" given then the context XE "context" is used. For example if the context is a blog post:

[image: image338.png]stitles> >
‘blog_post (name]" class="string blog-post-name” type='text® val

"My Blog Post® name="blog_post(name]"/>

<input:created at/> >
<select id="blog post_created at_year" name="blog_post[created at] [yeaz]">...</select>
<select id="blog post_created at_month” name="blog_post[created at] [month]">...</select>
<select id="blog post_created at_day" name="blog_post[created at] [day]">...</select>

<input:description/> >
<textarea class="text blog-post-description” id="blog_post(description]” name='

‘blog_post (description]">. ..</textarea>

If the context XE "context" is XE "is" a belongs_to XE "belongs_to" association, the <select-one> tag is used.

If the context XE "context" is XE "is" a has_many XE "has_many" :through association, the polymorphic XE "polymorphic" <collection-input> tag is used.

Attributes

· no-edit: control what happens if can_edit? XE "can_edit?" is XE "is" false. Can be one of:

· view: render the current value using the <view> tag

· disable: render the input as normal, but add HTML XE "HTML" ’s disabled attribute XE "attribute"
· skip XE "skip" : render nothing at all

· ignore: render the input normally. That is XE "is" , don’t even perform the edit check.

<input for='HoboFields::EnumString'>
A <select> menu containing the values of an ‘enum string’.

Attributes

· labels - A hash that gives custom labels for the values of the enum. Any values that do not have corresponding keys in this hash will get value.titleize as the label XE "label" .

· titleize - Set to XE "to" false to have the value itself (rather than value.titleize) be the default label XE "label" . Default: true

· first-option - a string to XE "to" be used for an extra option in the first position. E.g. “Please choose…”

· first-value - the value to XE "to" be used with the first-option. Typically not used, meaning the option has a blank value.

<input for='text'>
A <textarea> input

<input for='boolean'>
A checkbox plus a hidden-field. The hidden field trick comes from Rails - it means that when the checkbox is XE "is" not checked, the parameter name XE "name" is still submitted, with a ‘0’ value (the value is ‘1’ when the checkbox is checked)

<input for='password'>
A password input - <input type='password'>
<input for='date'>
A date picker, using the select_date helper from Rails

Attributes

· order XE "order" : The order of the year, month and day menus. A comma separated string or an array. Default: “year, month, day”

Any other attributes XE "attributes" are passed through to XE "to" the select_date helper.

The menus default to XE "to" the current date if the current value is XE "is" nil.

<input for='time'>
A date/time picker, using the select_date helper from Rails

Attributes

· order XE "order" : The order of the year, month and date menus. A comma separated string or an array. Default: “year, month, day, hour, minute, second”

Any other attributes XE "attributes" are passed through to XE "to" the select_date helper. The menus default to the current time if the current value is XE "is" nil.

<input for='datetime'>
A date/time picker, using the select_datetime helper from Rails

Attributes

· order XE "order" : The order of the year, month and date menus. A comma separated string or an array. Default: “year, month, day, hour, minute”

Any other attributes XE "attributes" are passed through to XE "to" the select_datetime helper.

The menus default to XE "to" the current time if the current value is XE "is" nil.

<input for='integer'>
An <input type='text'> input.

<input for='float'>
An <input type='text'> input.

<input for='string'>
An <input type='text'> input.

<input for='big_integer'>
An <input type='text'> input.

<input for='Paperclip::Attachment'>
<input for='BigDecimal'>
An <input type='text'> input.

<collection-input>
This tag is XE "is" called by <input> when the context XE "context" is a has_many XE "has_many" :through collection XE "collection" . By default a <select-many> is used, but this can be customized on a per-type basis. For example, say you would like the <check-many> tag used to XE "to" edit collections a Category model in your application:

<def tag="collection-input" for="Category"><check-many merge/></def>
collection-input for='ActiveRecord::Base'>
The default <collection-input> - calls <select-many>
Rapid Generics XE "Rapid Generics"
Rapid Generics XE "Rapid Generics" provides tags that provide generic renderings that can adapt to XE "to" the model being rendered. At the moment this library provides cards and collections of cards.

	<card> XE "<card>"

	<search-card> XE "<search-card>"

	<empty-collection-message> XE "<empty-collection-message>"

	<collection> XE "<collection>"

	<record-flags> XE "<record-flags>"

<card XE "card" >
A ‘card XE "card" ’ is XE "is" a representation of an sub-object within a page, such as a comment on a blog-post, or a single product in a list of produtcs. This definition is just the very basic framework which gives the basis for the automatic cards that get generated. See app/views/taglibs XE "taglibs" /auto/rapid/cards.dryml XE "cards.dryml" for the cards that have been generated for your specific application.

Parameters

· default

· header XE "header"

· body XE "body"

<search-card>
A special card XE "card" which is XE "is" used by live-search to XE "to" render the results. By default this just calls card, but you can define your own search XE "search" cards with <def tag='search-card' for="MyModel"> to customize search results for that model.

<empty-collection-message>
Renders a message such as “No products to XE "to" display”. If the collection XE "collection" (this) is XE "is" empty, style="display:none" is added. This means the message is still present and can be revealed with JavaScript if all items in the collection are removed with AJAX remove buttons.

Parameters

· default

<collection> XE "<collection>"
Repeats the body XE "body" of the tag inside a <ul XE "ul" > list with one item for each object in the collection XE "collection" (this). If no body is XE "is" given, renders a <card XE "card" > inside the .

The tags are automatically given a ‘model ID’ CSS XE "CSS" class, which means the AJAX <remove-button> will automatically be able to XE "to" remove items from the collection XE "collection" . Also adds ‘even’ and ‘odd’ CSS classes.

Parameters

· item

· default

· card XE "card"

· empty-message XE "empty-message"

<record-flags>
Renders a comma-separated list of any fields passed in the fields attribute XE "attribute" that are true (in the Ruby sense). For example, if a forum post had a boolean field sticky, this tag can be used to XE "to" automatically label XE "label" sticky posts “Sticky”. Similarly, you could automatically add an “Administrator” label to the user’s home page (this is XE "is" seen in the default Hobo XE "Hobo" app).

Rapid Lifecycles XE "Rapid Lifecycles"

 XE "Lifecycles"
Contains view-layer support for Hobo XE "Hobo" ’s lifecycles. Note that lifecycle forms are generated automatically in app/views/taglibs XE "taglibs" /auto/rapid/forms.dryml - this library contains only
lifecycle push-buttons.
	<transition-button> XE "<transition-button>"

	<transition-buttons> XE "<transition-buttons>"

<transition-button> XE "<transition-button>"
A push-button to XE "to" invoke a lifecycle transition XE "transition" either as a page-reload or as an AJAX call.

Attributes

· transition XE "transition" - the name XE "name" of the transition to XE "to" invoke. Required

· update XE "update" - one or more DOM IDs of AJAX parts to XE "to" update after the transition XE "transition"
· label XE "label" - the label on the button. Defaults to XE "to" the name XE "name" of the transition XE "transition"
All of the standard AJAX attributes XE "attributes" are also supported.

<transition-buttons> XE "<transition-buttons>"
Renders a div containing transition XE "transition" buttons for every transition available to XE "to" the current user.

For example, you could use this on a Friendship card XE "card" : the person invited to XE "to" have friendship would automatically see ‘Accept’ and ‘Decline’ buttons, while the person initiating the invite would see ‘Retract’.

Rapid Navigation XE "Rapid Navigation"
Support for navigation links, account XE "account" navigation (log in, out etc.) and pagination navigation.

	<navigation> XE "<navigation>"

	<nav-item> XE "<nav-item>"

	<account-nav> XE "<account-nav>"

	<page-nav> XE "page-nav"

<navigation> XE "<navigation>"
General purpose navigation bar. Renders a <ul XE "ul" class="navigation">. This tag is XE "is" intended to XE "to" be used in conunction with <nav-item>. The main feature of this pair of tags (over, say, just using a plain list), is that it’s easy to have a ‘current’ CSS XE "CSS" class added to the appropriate nav item (so you can highlight the page/section the user is)

The main navigation in the default hobo app is XE "is" implemented with <navigation> but this tag is also appropriate for any sub-navigation.

Parameters

· default

Attributes

· current - the textual content XE "content" of the nav item that should have the ‘current’ CSS XE "CSS" class added (see example)

Example

The normal usage is XE "is" to XE "to" define your own navigation tag that calls <navigation>.

<def tag="sub-nav">

 <navigation merge>

 <nav-item>Red</nav-item>

 <nav-item>Green</nav-item>

 <nav-item>Blue</nav-item>

 /navigation> </def>
Then in your pages you can call the tag like this

· On the ‘red’ page: <sub-nav current="red"/>
· On the ‘green’ page: <sub-nav current="green"/>
· and so on.

<nav-item> XE "<nav-item>"
Renders a single item in a <navigation> menu.

<account-nav> XE "<account-nav>"
Account Navigation XE "Account Navigation" (log in / out / signup)

When logged in, this renders:

· “Logged in as XE "Logged in as" …”

· Link to account XE "account" page XE "Link to account page"
· Log out link

When not logged in, renders:

· Log in link

· Sign up link

This is XE "is" a simple tag - just look at the source if you need to XE "to" know more detail.

Parameters

· ul XE "ul"

· dev-user-changer XE "dev-user-changer"

· logged-in-as XE "logged-in-as"

· account XE "account"

· log-out XE "log-out"

· log-in XE "log-in"

· sign-up XE "sign-up"

<page-nav> XE "<page-nav>"
· A simple wrapper around the will_paginate helper. All options XE "options" to XE "to" will_paginate are available as attributes XE "attributes"
Rapid Pages XE "Rapid Pages"
Rapid-Pages provides tags for working with entire pages.

	<page> XE "<page>"

	<page-scripts> XE "<page-scripts>"

	<permission-denied-page> XE "<permission-denied-page>"

	<not-found-site> XE "<not-found-site>"

	<doc-type> XE "<doc-type>"

	<html> XE "<html>"

	<if-ie> XE "<if-ie>"

	<stylesheet> XE "<stylesheet>"

	<javascript> XE "<javascript>"

	<flash-message> XE "<flash-message>"

	<flash-messages> XE "<flash-messages>"

	 XE "<ajax-progress>" <ajax-progress>

<page>

The basic page structure for all the pages in a Hobo Rapid application. Providing the doctype, page title, standard stylesheet javascript includes, the AJAX progress spinner, default header XE "header" with app-name, account XE "account" navigation, main navigation, and live search XE "search" , empty section for the page content XE "content" , flash message (if any) and an empty page footer. The easiest way to XE "to" see what this tag does is XE "is" to look at the source.

Parameters

· head

· title

· stylesheets XE "stylesheets"

· app-stylesheet

· scripts

· javascript

· fix-ie6

· custom-scripts

· application-javascript

· body XE "body"

· AJAX-progress XE "AJAX-progress"

· header XE "header"

· account-nav

· app-name

· live-search

· main-nav

· content XE "content"

· footer

· page-scripts

Attributes

· title - the page title, will have “: <app-name>” appended

· full-title - the full page title. Set this if you do not want the app name XE "name" suffix.
<page-scripts>

Renders dynamically generated JavaScript required by hobo-rapid.js, including the information required to XE "to" perform automatic part updates

Parameters

· default
<permission-denied-page>

The page rendered by default in the case of a permission-denied error

Parameters

· content XE "content"

· content-header XE "content-header"

· heading XE "heading"

Attributes

· message - The main message to XE "to" display. Defaults to “That operation is XE "is" not allowed”
<not-found-page>

The page rendered by default in the case of a not-found error

Parameters

· content XE "content"

· content-header XE "content-header"

· heading XE "heading"

Attributes

· message - The main message to XE "to" display. Defaults to “The page you were looking for could not be found”
<doctype>

Renders one of five HTML XE "HTML" DOCTYPE declarations, according to XE "to" the version attribute XE "attribute" .

Attributes

· ‘version’ - the doctype version, must be one of:

· HTML XE "HTML" 4.01 STRICT

· HTML XE "HTML" 4.01 TRANSITIONAL

· XHTML 1.0 STRICT

· XHTML 1.0 TRANSITIONAL

· XHTML 1.1
<html>

Renders an <html> tag along with the DOCTYPE specified in the doctype attribute XE "attribute" .

Parameters

· default

Attributes

· doctype - the version of the DOCTYPE required. See the version attribute XE "attribute" to XE "to" <doctype>
<if-ie>

Renders a conditional comment in order XE "order" to XE "to" have some content XE "content" ignored by all browsers other than Internet Explorer

Parameters

· default

Example

<if-ie version="lt IE 7"> ... </if-ie>
<stylesheet>

Simple wrapper for the stylesheet_link_tag helper. The name XE "name" attribute XE "attribute" can be a comma-separated list of stylesheet names.

<javascript>

Simple wrapper for the javascript_include XE "include" _tag helper. The name XE "name" attribute XE "attribute" can be a comma-separated list of script file names.

<flash-message>

Renders a Rails flash message wrapped in a <div> tag

Attributes

· type - which flash message to XE "to" display. Defaults to :notice
CSS XE "CSS" Classes

The flash is XE "is" output in a <div class="flash notice">, where notice is the type specified.

<flash-messages>

Renders <flash-message> for every flash type given in the names attribute XE "attribute" (comma separated), or for all flash messages that have been set if names is XE "is" not given.

<ajax-progress>

Renders:

<div id="ajax-progress">
 <div>

 </div>
</div>
The theme XE "theme" will style this as an AJAX progress ‘spinner’

Rapid Plus

Tags that define higher level interactive ‘widgets’

	<live-search> XE "<live-search>"

	<filter-menu> XE "<filter-menu>"

	<table-plus> XE "<table-plus>"

	<sortable-collection> XE "<sortable-collection>"

	<preview-with-more> XE "<preview-with-more>"

	<gravatar> XE "<gravatar>"

<live-search>
Provides an AJAX-powered find-as-you-type live search XE "search" field which is XE "is" hooked up to XE "to" Hobo XE "Hobo" ’s site-side search feature. At the moment this tag is not very flexible. It is not easy to use if for anything other than Hobo’s site-wide search.

Parameters

· close-button XE "close-button"

<filter-menu>
A <select> menu intended to XE "to" act as a filter for index pages.

Attributes

· param-name - the name XE "name" of the HTTP parameter to XE "to" use for the filter

· options XE "options" - an array of options for the menu.

· no-filter XE "no-filter" - The text of the first option which indicates no filter is XE "is" in effect. Defaults to XE "to" ‘All’

<table-plus>
An enhanced version of Rapid’s <table> that has support for column sorting, searching and pagination.

This tag calls <table merge-params>, so the parameters for <table> are also available.

An worked example of this tag is XE "is" available in the Agility Tutorial
Parameters

· header XE "header"

· search-form XE "search-form"

· search XE "search" -submit XE "search-submit"

· #{scope.field-name}-heading

· #{scope.field-name}-heading-link

· up-arrow XE "up-arrow"

· down-arrow XE "down-arrow"

· empty-message XE "empty-message"

· page-nav XE "page-nav"

<sortable-collection>
An enhanced version of Rapid’s <collection XE "collection" > tag that supports drag-and-drop re-ordering.

Each item in the collection XE "collection" has a <div class="ordering-handle" param XE "param" ="handle"> added, which can be used to XE "to" drag the item up and down.

Parameters

· item

· handle

· default

· card XE "card"

Attributes

· sortable-options XE "sortable-options" - a hash of options XE "options" to XE "to" pass to the sortable_element helper. Default are:

[image: image339.png](sconstraint => ivertical,
overlap => rvertical,
ssezoll indow,
shandle => 'ordering-handle’,
scomplete => [visual_effect (:highlight, attributes(:

an))

Controller support

This tag assumes the controller has a reorder action XE "action" . This action is XE "is" added automatically by Hobo XE "Hobo" ’s model-controller if the model declares acts_as_list. See also drag and drop reordering in the Controllers and routing section of this book.

<preview-with-more>
Captures the common pattern of a list of “the first few” cards, along with a link to XE "to" the rest.

Parameters

· default

· heading XE "heading"

· more

· collection XE "collection"

<gravatar XE "gravatar" >
Renders a gravatar XE "gravatar" (see gravatar.com XE "gravatar.com") image in side a link to XE "to" this. Requires this to have an email_address field. Normally called with a user record in context XE "context" .

Attributes

· size XE "size" - Size in pixels of the image. Defaults to XE "to" 80.

· rating XE "rating" - The rating allowed. Defaults to XE "to" ‘g’. See gravatar" gravatar.com
 XE "gravatar.com" for information on ratings.

Rapid Support XE "Rapid Support"
Rapid Support is the home for some tags that are useful in defining other tags.

	<with-fields> XE "<with-fields>"

	<with-field-names> XE "<with-field-names>"

<with-fields>
Call with the context XE "context" set to XE "to" a record. Repeats the content XE "content" of the tag with this and this_field XE "this_field" set to the value and name XE "name" of each of the record’s fields in turn. E.g. this is XE "is" useful for generating a form XE "form" containing each of the fields. Tags like <field-list XE "field-list" > and <table> forward their attributes XE "attributes" to this tag and also have the features described here. For example, the fields attribute XE "attribute" to <field-list> supports the same options XE "options" as described here.

This tag is XE "is" in need of a review - it’s a bit funky.

Parameters

· default

· default

Attributes

· fields - set to XE "to" one of:

· A model class - equivalent to XE "to" listing all of the regular ‘content XE "content" columns’ of that model

· ’*’ - equivalent to XE "to" listing all of the regular ‘content XE "content" columns’ of the current record

· A comma separated list of field names. Defaults to XE "to" ’*’

· assocaitions - set to XE "to" has_many XE "has_many" to select the associations XE "associations" has_many relationships used as the “fields”. Do not also give the fields attribute XE "attribute" .

· skip XE "skip" - comma separated list of field names to XE "to" omit.

· skip-associations XE "skip-associations" - set to XE "to" has-many to omit all has_many XE "has_many" associations XE "associations" .

· include-timestamps XE "include-timestamps" - whether or not to XE "to" include XE "include" the standard ActiveRecord timestamp fields such as created_at and updated_at. Defaults to false.

· force-all XE "force-all" - by default fields are skipped if the current user does not have view permission. Set force-all to XE "to" true to skip XE "skip" this permission check and include XE "include" all the fields.

<with-field-names>
Call with the context XE "context" set to XE "to" a model class. Repeats the content XE "content" of the tag with this set name XE "name" of each of the model’s fields in turn. E.g. this tag is XE "is" used when generating the heading XE "heading" row in a <table fields='...'/>.

This tag is XE "is" in need of a review - it’s a bit funky.

Attributes

· fields - set to XE "to" one of:

· A model class - equivalent to XE "to" listing all of the regular ‘content XE "content" columns’ of that model

· ’*’ - equivalent to XE "to" listing all of the regular ‘content XE "content" columns’ of the current record

· A comma separated list of field names. Defaults to XE "to" ’*’

· skip XE "skip" - comma separated list of field names to XE "to" omit.

· skip-associations XE "skip-associations" - set to XE "to" has-many to omit all has_many XE "has_many" associations XE "associations" .

· include-timestamps XE "include-timestamps" - whether or not to XE "to" include XE "include" the standard ActiveRecord timestamp fields such as created_at and updated_at. Defaults to false.

Rapid User Pages XE "Rapid User Pages"
Rapid User Pages XE "Rapid User Pages" contains tags that implement the basics of Hobo XE "Hobo" ’s user management: log in, sign up, forgot password etc.

	<simple-page> XE "<simple-page>"

	<login-page> XE "<login-page>"

	<forgot-password-page> XE "<forgot-password-page>"

	<forgot-password-email-sent-page> XE "<forgot-password-email-sent-page>"

	<account-disabled-page> XE "<account-disabled-page>"

	<account-page> XE "<account-page>"

<simple-page>
Some of the user pages use a simplified layout that does not feature things like the main nav and live-search. This tag defines that page

<login-page>
Simple log-in XE "log-in" page XE "Simple log-in page"
Parameters

· body XE "body"

· content XE "content"

· content-header XE "content-header"

· heading XE "heading"

· content-body XE "content-body"

· form XE "form"

· labelled-item-list XE "labelled-item-list"

· login-label XE "login-label"

· login-input XE "login-input"

· password-label XE "password-label"

· password-input XE "password-input"

· remember-me XE "remember-me"

· remember-me-label XE "remember-me-label"

· remember-me-input XE "remember-me-input"

· actions XE "actions"

· submit XE "submit"

· forgot-password XE "forgot-password"

<forgot-password-page>
The page that initiates the forgotten password process. Contians a single text-input where the user can provide their email address

Parameters

· body XE "body"

· content XE "content"

· content-header XE "content-header"

· heading XE "heading"

· content-body XE "content-body"

· form XE "form"

· labelled-item-list XE "labelled-item-list"

· email-address-label XE "email-address-label"

· email-address-input XE "email-address-input"

· actions XE "actions"

· submit XE "submit"

<forgot-password-email-sent-page>
Second page in the forgotten password process. Informs the user that the email has been sent “If the e-mail address you entered is XE "is" in our records”. This is to XE "to" avoid a privacy concern that the forgotten-password mechanism can be otherwise used to tell if a given email is associated with an account XE "account" or not.

Parameters

· body XE "body"

· content XE "content"

· content-header XE "content-header"

· h2

· content-body XE "content-body"

· message

<account-disabled-page>
The page that is XE "is" displayed on attempting to XE "to" log in to an account XE "account" that has been disabled.

Parameters

· body XE "body"

· content XE "content"

· content-header XE "content-header"

· h2

· content-body XE "content-body"

<account-page>
Basic account XE "account" page that provides the ability for the user to XE "to" change their email address and password.

Parameters

· body XE "body"

· content XE "content"

· content-header XE "content-header"

· heading XE "heading"

· content-body XE "content-body"

· error-messages XE "error-messages"

· form XE "form"

· field-list XE "field-list"

· actions XE "actions"

· submit XE "submit"

Exploring DRYML XE "DRYML" with the Advanced Trace Utility XE "Hobo"

 XE "Advanced Trace Utility"

 XE "Trace Utility"
By Kristian Mandrup

This chapter seeks to XE "to" aid you in uncovering the inner workings of the DRYML XE "DRYML" internals by setting up a DRYML tracer and tracing the execution of DRYML.
The gem trace-util-adv was born from a personal need to XE "to" trace the execution of DRYML XE "DRYML" in order XE "order" to understand DRYML enough that I could extend it for use in other scenarios than producing static HTML XE "HTML" , such as producing JSON for use with javascript to integrate JSON based widget frameworks such as ExtJS.

Tracing will teach you:

· What DRYML XE "DRYML" actually produces as it executes

· The structure and key methods of the DRYML XE "DRYML" engine

· How to XE "to" reconfigure the DRYML XE "DRYML" engine to your needs

You can use this DRYML XE "DRYML" engine knowledge, in order XE "order" to XE "to" extend DRYML to fit your needs and perhaps even assist in the further development of DRYML.
The DRYML XE "DRYML" engine is XE "is" currently designed for outputting HTML XE "HTML" or more generally, nested concatenated strings of which HTML is a subset. In a coming version (or branch) of DRYML, the code will be refactored and redesigned to XE "to" be more flexible than just concatenating strings unconditionally. Expect this flexibility XE "flexibility" in DRYML in the first quarter of 2010.

This chapter is XE "is" divided into the following main sections:

· Installation and configuration of DRYML XE "DRYML" tracing

· Customizing DRYML XE "DRYML" tracing

· Uncovering the secrets of the DRYML XE "DRYML" engine internals

· Strategies for refactoring the DRYML XE "DRYML" engine for specific requirements

Installation and configuration

Setup a Hobo project for advanced tracing:

· Install infrastructure (gemcutter XE "gemcutter" and thor gems XE "gems")

· Install the trace-util-adv gem

· Create XE "Create" a new project using edge Hobo with tracing

Install infrastructure

Installation of gemcutter XE "gemcutter" and thor is XE "is" described in a previous chapter on Hobo infrastructure.
Install the trace-util-adv gem

> gem install trace-util-adv

This should download and install the gem from gemcutter XE "gemcutter" .org, including dependencies.
Create XE "Create" a Hobo edge project with tracing
Use the thor task hobo:edge with a parameter to XE "to" enable tracing.

> thor hobo:edge tracing
Note: Executing this task should also check if the trace-util-adv gem is XE "is" installed and if not install it from gemcutter XE "gemcutter" .

Hobo DRYML XE "DRYML" tracing configuration

Kristian hosts a small github plugin that contains preset configurations to XE "to" enable basic DRYML XE "DRYML" tracing, suitable for most needs at github.com" http://github.com/kristianmandrup/dryml_trace

To install the dryml_trace plugin:

project > git install plugin http://github.com XE "github.com" /kristianmandrup/dryml_trace
This will create a dryml_trace folder inside the vendor/plugins folder. Inside the dryml_trace folder is XE "is" a file called dryml_trace_config.rb with a tracing configuration that can be overridden if you need to XE "to" . In order XE "order" to understand how to customize the configuration, please see the documentation for the trace-util-adv gem, available as part of the github source for the trace-util-adv gem.

Source for the trace-util-adv gem: github.com" http://github.com/kristianmandrup/trace-util-adv

Using TraceUtils with Hobo and DRYML XE "DRYML"
The recommended way to XE "to" use TraceUtils for tracing Hobo or DRYML XE "DRYML" is XE "is" to apply tracing in an unobtrusive fashion in lib/dryml_trace_configuration.rb:

dryml_classes = [‘DRYMLBuilder’, 'Template', 'TemplateEnvironment']
modules = {:modules => [{:module => ‘Hobo::Dryml’, :classes => dryml_classes}]}
Tracing::TraceCalls.trace modules
The modules hash sets up which modules should be traced. For each module a list of classes that should be traced for the module can also be defined.
The above configuration results in the module TraceCalls being “mixed in” into each of the DRYML XE "DRYML" classes specified, fx for Hobo::DRYML::Template.

[image: image340.png]

Figure 335: Configuring DRYML XE "DRYML" for tracing

When TraceCalls is XE "is" mixed into a class, it will iterate all instance methods of the class it is mixed into, and wrap the methods with “before” and “after” tracing aspects for when the method XE "method" is called.

A coming version of TraceCalls will also allow you to XE "to" do this for class instance methods.

Configuring DRYML XE "DRYML" tracing

The tracing utility includes a powerful concept of filters. An “instance variable filter” can be configured to XE "to" filter based on the current value of one or more instance variables XE "instance variables" .

This is XE "is" very useful for DRYML XE "DRYML" tracing in particular. When the DRYML engine parses DRYML templates (.dryml files) it assigns each file location it processes to XE "to" the @template_path instance variable. It uses this location information to determine how to handle the particular DRYML file.

DRYML XE "DRYML" files in certain locations are handled differently. The dryml files in /taglibs XE "taglibs" / are considered as tag libraries and handled as such. We can use this location information to XE "to" also trace the files differently depending on their location and hence the type of template.

Using a vars_filter we can send the traces to XE "to" different appenders depending on the value of this instance variable. We can make the following @template_path location rules.

/taglib/

DRYML XE "DRYML" tag library

application.dryml XE "application.dryml"
Application template

/views/

Custom view template

This way we could send the trace to XE "to" log files in different locations. The configuration included in the dryml_tracing plugin has the following tracing output rules:

For each DRYML XE "DRYML" template 3 tracing files are generated in the logs directory:

· .log

text file of method XE "method" call traces

· .html

HTML XE "HTML" file of traced method XE "method" call hierarchy

· .erb XE "erb"

erb code generated from DRYML XE "DRYML" by the DRYML engine

DRYML XE "DRYML" tag library
logs/dryml/taglib/[name XE "name"]/[taglib_name].dryml.xxxx

/taglib/rapid_core

logs/dryml/taglib/rapid/core.dryml.log

logs/dryml/taglib/rapid/core.dryml.html

 logs/dryml/taglib/rapid/core.dryml.erb XE "erb"
application template
logs/dryml/application.dryml XE "application.dryml" .log

logs/dryml/application.dryml XE "application.dryml" .log

 logs/dryml/application.dryml XE "application.dryml" .erb XE "erb"
custom view template
logs/dryml/views/[controller]/[action XE "action"].dryml.xxxx

/views/user/show.dryml XE "show.dryml"
logs/dryml/views/user/show.dryml.log

 logs/dryml/views/user/show.dryml XE "show.dryml" .html

 logs/dryml/views/user/show.dryml XE "show.dryml" .erb XE "erb"
Examples of .erb XE "erb" code and log files generated by the tracing the DRYML XE "DRYML" engine using this technique can be seen at: github.com" http://github.com/kristianmandrup/hobo_dryml_uncovered

An example of the HTML XE "HTML" output trace generated is XE "is" shown in the following figure.

[image: image341.png]DRYMLBuilder.import_module

DRYMLBuilder.import_module :: BEGIN

Hobo::HoboHelper.

DRYMLBuilder.import_module :: END

+

DRYMLBuilder.start

DRYMLBuilder.start :: BEGIN

DRYMLBuilder.start :: END

DRYMLBuilder.build

DRYMLBuilder.build :: BEGIN

pluginhobosrccoresrctaglibs/applicationSun Oct 25 15:39:23 +0100 2009

DRYMLBuilder.import_taglib

DRYMLBuilder.import_taglib :: BEGIN

pluginhobosrccore

Figure 336: HTML XE "HTML" DRYML XE "DRYML" tracing
Note that you can expand and collapse the nested methods by clicking on the white blocks.

An example output from a generated .dryml.log file:

[image: image342.png]tag_call - do_
tag_attributes
ithout_parameters

call - do_({:default => "param", :sep => ","}, {1

Template: : apply_control _attributes

Template: :maybe_make_part_call

call before metadata - <% concat(do_({:default = "param", :sep => ","}, {})) %
Template: :tag_call - do_ END
Template
Template: :node_to_erb
Template: _body END

comma(all_attributes={}, all_parameters={}); parameters = Hobo
TagParameters.new(all_parameters); _tag_context(all_attributes) do attributes,
(do_({:default => "paran”, :sep = ","}, {})) %

% output_buffer; end; end %>

Template: :element_to_erb END

Template
Template
Template
Template
Tag Name
Template:

Figure 337: Sample output from a ".dryml.log" file
The following example demonstrates tracing for: /app/views/front/index.dryml XE "index.dryml" .erb XE "erb"
views/taglibs XE "taglibs" /application.dryml XE "application.dryml"
…

<def tag="comma">

 <do default="param XE "param" "/>

</def>

<def tag="x">

 <do default="param XE "param" "/>
</def>

views/front/index.dryml XE "index.dryml"
<page title="Home">

 <body XE "body" : class="front-page"/>

 <content XE "content" :>

 <comma>

 <x>hello</x>

 <x>hello you</x>

 </comma>

 </content XE "content" :>

</page>

Results in the following .erb XE "erb" being generated by the DRYML XE "DRYML" engine:

views/front/index.dryml XE "index.dryml" .erb XE "erb"
<% concat(page({:title => "Home"}, {

 :body XE "body" => proc { [{:class => "front-page"}, {}] },

 :content XE "content" => proc { [{}, { :default => proc { |_content__default_content| new_context XE "context" { %>

 <% concat(comma({}, {
 :default => proc { |_comma__default_content XE "content" | new_context XE "context" { %>

 <% concat(x({}, {
 :default => proc { |_x__default_content XE "content" | new_context XE "context" { %>
 hello<% } }, })) %>

 <% concat(x({}, {
 :default => proc { |_x__default_content XE "content" | new_context XE "context" { %>
 hello you<% } }, })) %>

 <% } }, })) %>

 <% } }, }] },

})) %>

You can see similar .erb XE "erb" outputs for the rapid and core taglibs XE "taglibs" in:

 /app/views/taglibs XE "taglibs" /rapid/

 /app/views/taglibs XE "taglibs" /auto/rapid

Notice the multiple nested concat statements. DRYML XE "DRYML" basically works by outputting .erb XE "erb" which does a number of function calls. Each function call results in something that has a .to XE "to" _s (convert to string) method XE "method" and then concatenating each string result into a final string result, which can then take part in a higher level concat and so on.

Uncovering the secrets of the DRYML XE "DRYML" engine internals

The Hobo DRYML XE "DRYML" engine is XE "is" currently located within the hobo plugin in the folder

plugins/vendor/hobo/hobo/lib/hobo/.

Inside this folder, the file dryml.rb contains the logic to XE "to" hook DRYML XE "DRYML" into Rails.

The DRYML XE "DRYML" engine itself is XE "is" found mostly in the dryml folder.

Looking into dryml.rb we find the following, which defines the core taglibs XE "taglibs" used and where the application taglib can be found.
APPLICATION_TAGLIB = { :src => "taglibs XE "taglibs" /application" }

CORE_TAGLIB = { :src => "core", :plugin => "hobo" }

The following code registers the DRYML XE "DRYML" template handler as a Rails template handler in ActionView. This code should be changed XE "changed" for use with Rails 3 or for use in another context XE "context" such as another web framework.

 def enable

 ActionView::Template.register_template_handler(
 "dryml", Hobo::Dryml::TemplateHandler)

 DrymlGenerator.enable

 end

The following code is XE "is" used to XE "to" precompile the core taglibs XE "taglibs" that come with hobo. In order XE "order" to ensure your own taglibs are precompiled, either place the inside the taglibs directory of the hobo plugin (see file pattern) or change the logic here to include XE "include" other taglib locations of your choice.

def precompile_taglibs XE "taglibs"
 Dir.chdir(RAILS_ROOT) do

 taglibs XE "taglibs" = Dir["vendor/plugins/**/taglibs/**/*.dryml"] + Dir["app/views/taglibs/**/*.dryml"]

 taglibs XE "taglibs" .each do |f|

 Hobo::Dryml::Taglib.get(:template_dir => File.dirname(f), :src => File.basename(f).remove(".dryml"))

 end

 end

 end

Internals of the DRYML XE "DRYML" engine

The DRYML XE "DRYML" engine consists of the following main parts:

· DRYML XE "DRYML" builder

· Template

· Template handler

dryml_builder.rb
The method XE "method" render_page_source renders the erb XE "erb" source code that is XE "is" evaluated to XE "to" display the end result of the DRYML XE "DRYML" template. The method evaluates the source with a new object context XE "context" and finally returns a generated output_buffer, which is rendered to the screen by ActionView.
def render_page_source(src, local_names)

 locals = local_names.map{|l| "#{l} = __local_assigns__[:#{l}];"}.join XE "join" (' ')

 "def render_page(__page_this__, __local_assigns__); " + "#{locals} new_object_context XE "context" (__page_this__) do " + src + "; output_buffer; end; end"

end

render_page_source is XE "is" called from the build method XE "method" in dryml_builder.rb
when :render_page
 …

 method XE "method" _src = render_page_source(erb XE "erb" _process(instruction[:src]), local_names)

 @environment.compiled_local_names = local_names

 @environment.class_eval(method XE "method" _src, template_path, instruction[:line_num])

The class_eval call evaluates the ruby code generated and returned as a string by render_page_source (see above). This is XE "is" then registered as a renderer for use later.

The DRYML XE "DRYML" template_handler
Hobo::Dryml::TemplateHandler

def render_for_rails22(template, view, local_assigns)

 renderer = Hobo::Dryml.page_renderer_for_template(view, local_assigns.keys, template)

 this = @view.instance_variable_set("@this", view.controller.send(:dryml_context XE "context") || local_assigns[:this])

 s = renderer.render_page(this, local_assigns)

 # Important to XE "to" strip whitespace, or the browser hangs around for ages (FF2)

 s.strip

 end

The call to XE "to" render_page is XE "is" a call to the code previously generated in render_page_source.

class ActionView::Template

 def render_with_ XE "with_" dryml(view, local_assigns = {})

 if handler == Hobo::Dryml::TemplateHandler

 render_dryml(view, local_assigns)

 else

 render_without_ XE "without_" dryml(view, local_assigns)

 end

 end

 alias_method XE "method" _chain :render, :dryml

 def render_dryml(view, local_assigns = {})
 …

 Hobo::Dryml::TemplateHandler.new.render_for_rails22(self, view, local_assigns)
 end

Notice the alias_method XE "method" _chain statement. This redirects all calls to XE "to"

ActionView::Template.render to XE "to" instead call ActionView::Template.render_with_ XE "with_" dryml.

Here a source snippet from ActionView::Template.render_template
render_template(view, local_assigns = {})

 render(view, local_assigns)

This is XE "is" how DRYML XE "DRYML" is hooked into Rails 2!

template_environment.rb XE "environment.rb"
The most interesting methods here are:

· call_tag_parameter_with_ XE "with_" default_content XE "content"
· call_tag_parameter
· override_and_call_tag
You might want to XE "to" override these methods to overrule or extend default DRYML XE "DRYML" behavior.

Always try to XE "to" do this in an unobtrusive fashion, for example, by using alias_method XE "method" _chain.

template.rb

This is XE "is" where the erb XE "erb" code for each template is generated.

The method XE "method" process_src generates erb XE "erb" source code for a template located in a specific path by first parsing it and then traversing the root and converting each AST child to XE "to" erb.

def process_src

 @doc = Hobo::Dryml::Parser::Document.new(@src, @template_path)

 result = children XE "children" _to XE "to" _erb XE "erb" (@doc.root)

 restore_erb XE "erb" _scriptlets(result)

end

The final erb XE "erb" code is XE "is" then returned. The default DRYML XE "DRYML" tracing configuration is set up to XE "to" hook into this method XE "method" and save this erb output to an .erb log file.

The method XE "method" tag_call is XE "is" another essential method found here:

def tag_call(el)

 name XE "name" = call_name(el)

 param XE "param" _name XE "name" = get_param_name(el)

 attributes XE "attributes" = tag_attributes(el)

 newlines = tag_newlines(el)

 parameters = tag_newlines(el) + parameter_tags_hash(el)

…

 call = maybe_make_part_call(el, "<% concat(#{call}) %>"
 wrap_tag_call_with_ XE "with_" metadata(el, call)
end

You could choose to XE "to" return different erb XE "erb" source code than the default “<% concat(…) %>”, depending on the value of an attribute XE "attribute" or using some name XE "name" convention on the tag name or something. The “#{call}” will result in a list of arguments. Each argument is XE "is" eventually evaluated into some Object with a .to_s (to string) method XE "method" . This can be used to customize the result of certain kinds of tags and we will show in the next section.

Strategies for refactoring the DRYML XE "DRYML" engine for specific requirements

To use DRYML XE "DRYML" for other scenarios we would have to XE "to" short-circuit this “hardcoded” DRYML approach and replace concat with a custom function, which does something else.

ExtJS

For ExtJS we simply need to XE "to" be able to create valid JSON from DRYML XE "DRYML" . In order XE "order" to create valid JSON we simply need to join XE "join" all non-empty elements with a comma “,”. To do this we simply need to find places in the DRYML engine that outputs a string with “concat(…” and replace this with something like “concat_json(…”. A good place to do this is XE "is" in the method XE "method" tag_call in template.rb as described in the previous section. Something like this:

 …

 method XE "method" = attributes XE "attributes" [:json] ? “MyJson.concat” : “concat”

 call = maybe_make_part_call(el, "<% #{method XE "method" }(#{call}) %>"
 wrap_tag_call_with_ XE "with_" metadata(el, call)
end

module MyJson

 def self.concat(*args)

 …

 end

end

This approach is XE "is" somewhat “ugly” (intrusive!) however and illustrates the general need to XE "to" refactor DRYML XE "DRYML" in a coming release to make these kinds of customizations much less intrusive to do!

Stay tuned.

PDF
Kristian has a project prawn_assist, which enables you to XE "to" create a PDF document using prawn from any valid HTML XE "HTML" document. Prawn assist can be installed either as a gem or a plugin. See the github documentation for more details of how to configure it and use it.

github.com" http://github.com/kristianmandrup/Prawn-assist

In order XE "order" to XE "to" use DRYML XE "DRYML" for this purpose, we would simply need to have a prawn controller action XE "action" with a corresponding view setup. In this example we setup an action index in the Person controller.

person_controller.rb
def index XE "def index"
 …

 respond_to XE "to" do |format XE "format" |

 format XE "format" .html # index.rhtml

 format XE "format" .pdf { render :layout => false } # index.pdf.prawn

 end

end

views/person/index.pdf.prawn
html = render :partial => show'

pdf.font "#{Prawn::BASEDIR}/data/fonts/DejaVuSans.ttf"

use default render options XE "options"
Prawn::Assist::Generate.pdf(pdf, html)

This view calls a DRYML XE "DRYML" partial show.dryml XE "show.dryml" which generates the HTML XE "HTML" using DRYML.

This HTML XE "HTML" is XE "is" then used as input in the PdfGenerator of prawn_assist, which generates and returns the resulting PDF document. To generate the pdf, create a RESTful resource route in routes.rb, and in the browser go to XE "to" : http://localhost:3000/person/index.pdf
INDEX

_
_after, 394, See
_before, 394, See
_between, 394, See
_contains, 396

_does_not_contain, 394, 396

_does_not_end, 394, 397

_does_not_start, 394, 397

_ends, 394, 397

_is, 394, 395, 396, See
_is_not, 394, 395, 396, See
_starts, 394, 397

<
<a>, 443, 447

<account-disabled-page>, 478

<account-nav>, 469

<account-page>, 478

<after-submit>, 456, 461

<ajax-progress>, 471

<A-or-An>, 443, 449

<aside>, 452

<belongs-to-editor>, 453

<boolean-checkbox-editor>, 453, 454

<call-tag>, 441

<card>, 466

<check-many>, 456, 461

<collection>, 466

<collection-input>, 456

<collection-list>, 443

<collection-name>, 443, 447

<collection-view>, 443

<comma-list>, 443, 449

<count>, 443, 448

<create-button>, 456, 459

<delete-button>, 456, 458

<dev-user-changer>, 443

<do>, 441

<doc-type>, 471

<editor>, 453, 454

<else, 441

<empty-collection-message>, 466

<error-messages>, 456, 460

<field-list>, 443

<filter-menu>, 474

<flash-message>, 471

<flash-messages>, 471

<footer>, 452

<forgot-password-email-sent-page>, 478

<forgot-password-page>, 478

<form>, 456

<gravatar>, 474

<has-many-editor>, 453

<header>, 452

<hidden-id-field>, 456, 462

<hobo-rapid-javascripts>, 443, 446

<html>, 471

<if>, 441

<if-ie>, 471

<image>, 443, 445

<input>, 456, 462

<input-all, 456

<input-all>, 462

<input-many>, 456, 462

<integer-select-editor>, 453, 454

<javascript>, 471

<links-for-collection>, 443, 449

<live-search>, 474

<login-page>, 478

<name>, 446

<name-one>, 456, 459

<navigation>, 469

<nav-item>, 469

<nil-view>. nil-list

<not-found-site>, 471

<or-cancel>, 456

<page>, 471

<page-nav>, 470

<page-scripts>, 471

<partial>, 441

<permission-denied-page>, 471

<preview-with-more>, 474

<record-flags>, 466

<remote-method-button>, 456, 458

<repeat>, 441

<search-card>, 466

<section>, 452

<section-group>, 452

<select-input>, 456, 460

<select-many, 456

<select-many>, 461

<select-menu>, 456, 461

<select-one>, 456, 459

<select-one-editor>, 453

<simple-page>, 478

<sortable-collection>, 474

<spinner>, 443, 445

<string-select-editor>, 453

<stylesheet>, 471

<submit>, 456, 457

<table>, 443

<table-plus>, 474

<theme-stylesheet>, 443, 449

<transition-button>, 468

<transition-buttons>, 468

<type-name>, 443, 446, 447

<unless>, 441

<update-button>, 456, 458

<view>, 443, 449

<with>, 441

<with-field-names>, 476

<with-fields>, 476

<wrap>, 441

<You>, 443, 449

<Your>, 449

A
account, 23, 24, 46, 48, 73, 232, 283, 287, 360, 386, 440, 469, 470, 471, 479

Account Navigation, 469

acting_user, 48, 49, 50, 51, 73, 186, 187, 261, 263, 346, 347, 348, 349, 352, 353, 355, 356, 358, 377, 380, 381, 382

acting_user.signed_up?, 50, 51, 186, 187, 261, 263, 346, 347

action, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 64, 80, 93, 94, 95, 97, 98, 100, 120, 122, 125, 140, 141, 148, 157, 158, 159, 176, 177, 178, 205, 208, 249, 258, 262, 263, 265, 266, 322, 341, 342, 344, 346, 360, 361, 362, 363, 364, 365, 368, 369, 370, 379, 381, 384, 385, 386, 387, 410, 447, 448, 456, 457, 460, 475, 484, 489

actions, 50, 52, 53, 54, 55, 57, 58, 59, 60, 61, 76, 88, 90, 93, 138, 150, 154, 155, 158, 176, 177, 178, 179, 180, 182, 183, 208, 223, 231, 234, 261, 262, 263, 266, 269, 327, 341, 342, 345, 359, 360, 361, 362, 363, 364, 365, 367, 369, 370, 373, 377, 383, 384, 385, 386, 478, 479

--add-gem, 325, 326, 329, 333

--add-routes, 268, 325, 326, 329, 330, 333, 334, 337

Administration Sub-Site, 268

Advanced Trace Utility, 481

agile, x, 163

AJAX-progress, 445, 454, 471

alias-of, 430

all_attributes, 413, 414, 415, 426

all_changed?, 348, 353

any_changed?, 348, 353

application.css, 241, 242, 244, 246, 247, 252, 253, 257, 325, 333

application.dryml, 25, 61, 63, 64, 75, 92, 96, 97, 98, 99, 100, 101, 102, 103, 114, 120, 122, 123, 128, 131, 140, 141, 142, 146, 152, 153, 191, 192, 194, 195, 210, 216, 221, 229, 242, 243, 246, 248, 249, 253, 255, 257, 260, 325, 329, 333, 341, 342, 343, 344, 429, 483, 485

associated record collection, 128

Association Scopes, 395, 399

associations, 65, 66, 81, 164, 182, 311, 321, 339, 346, 347, 348, 352, 353, 453, 459, 461, 476, 477

attr_accessible, 350

attr_protected, 350, 355, 378

attr_readonly, 350

attribute, 44, 56, 65, 71, 104, 108, 110, 112, 123, 129, 130, 134, 135, 137, 142, 146, 147, 148, 150, 152, 158, 196, 202, 203, 207, 211, 215, 230, 234, 345, 346, 347, 348, 349, 350, 351, 352, 353, 355, 370, 379, 380, 381, 402, 404, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 419, 421, 426, 430, 431, 434, 436, 437, 441, 442, 444, 446, 447, 448, 449, 450, 457, 460, 461, 462, 463, 467, 472, 473, 476, 489

attributes, 113, 198, 229, 342, 347, 348, 349, 350, 351, 354, 366, 375, 376, 379, 381, 402, 403, 410, 412, 413, 414, 415, 416, 417, 419, 421, 423, 425, 426, 433, 448, 450, 453, 457, 458, 459, 464, 468, 470, 476, 488, 489

attrs, 249, 258, 412, 413, 414, 415, 435

auto_actions, 52, 53, 54, 55, 57, 58, 59, 176, 177, 178, 179, 180, 183, 208, 223, 231, 234, 263, 269, 359, 360, 362, 363, 370, 383

autocomplete, 369, 370, 460

auto-generated, 61, 82, 88, 90, 92, 93, 120, 123, 140, 141, 145, 148, 149, 150, 153, 157, 159, 199, 340, 341, 343

Auto-Generated Tag, 86, 90

B
background:, 241, 244, 245, 246, 247, 248, 251, 253, 256

bar chart, 226, 227

before_filter, 223, 330, 334

belongs_to, 68, 75, 77, 84, 165, 166, 208, 223, 261, 311, 312, 346, 347, 348, 352, 353, 356, 360, 361, 377, 380, 381, 382, 395, 399, 410, 453, 459, 460, 463

body, 46, 65, 66, 68, 70, 76, 95, 97, 100, 111, 122, 123, 124, 125, 126, 129, 131, 132, 138, 139, 140, 142, 143, 144, 145, 146, 149, 150, 152, 155, 164, 193, 196, 201, 230, 241, 242, 244, 247, 249, 253, 259, 263, 389, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 420, 421, 423, 424, 425, 426, 427, 430, 431, 434, 435, 441, 442, 445, 450, 462, 466, 471, 478, 479, 485

Boolean Scopes, 394, 397

by_most_recent, 394, 398

C
can_call?, 358

can_create?, 358

can_delete?, 358

can_edit?, 140, 157, 358, 463

can_update?, 358

card, 90, 93, 99, 100, 101, 123, 124, 125, 126, 127, 128, 131, 132, 194, 195, 196, 201, 342, 392, 423, 424, 425, 426, 428, 429, 430, 431, 432, 433, 466, 467, 468, 475

card merge-params=, 428

cards.dryml, 24, 25, 61, 88, 92, 100, 131, 340, 341, 342, 343, 466

Chaining, 395, See
changed, 26, 54, 97, 98, 101, 117, 118, 119, 151, 186, 187, 207, 242, 293, 321, 347, 348, 349, 350, 351, 353, 453, 454, 486

changed?, 187, 347, 348, 349, 351, 353

Changing Field Names, 18, 33

Changing Field Names and Displaying Hints, 18, 33

Charts, 218, 220, 222

children, 82, 84, 392, 488

CKEditor, 161, 205, 214, 215, 216, 217

close-button, 474

collection, 97, 100, 101, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 140, 143, 145, 150, 163, 196, 199, 201, 202, 222, 224, 227, 316, 341, 342, 361, 382, 392, 412, 417, 418, 423, 424, 430, 441, 442, 444, 447, 448, 449, 453, 457, 458, 462, 465, 466, 475

Colons in tag names, 437

Constraints, 310

content, 62, 97, 102, 105, 109, 110, 111, 112, 119, 122, 123, 125, 134, 140, 145, 147, 149, 150, 153, 193, 196, 197, 199, 203, 237, 238, 248, 249, 250, 252, 253, 254, 255, 256, 257, 258, 342, 373, 386, 392, 404, 406, 407, 408, 410, 411, 415, 416, 417, 419, 420, 421, 422, 425, 431, 432, 433, 435, 436, 437, 441, 442, 445, 447, 448, 452, 462, 469, 471, 472, 476, 477, 478, 479, 485, 488

content-body, 97, 111, 122, 140, 146, 147, 149, 150, 159, 199, 478, 479

content-header, 97, 111, 122, 140, 149, 193, 472, 478, 479

context, 2, 126, 129, 133, 151, 153, 159, 191, 196, 201, 361, 363, 379, 380, 381, 382, 393, 409, 410, 411, 412, 417, 418, 419, 420, 430, 441, 442, 444, 446, 447, 448, 449, 457, 458, 459, 460, 462, 463, 465, 475, 476, 485, 486, 487

controls, 29, 50, 80, 150, 262, 325, 340, 444, 445

Core, 440, 441, 443

Create, 20, 23, 24, 25, 28, 38, 39, 45, 46, 47, 50, 76, 108, 121, 141, 149, 151, 159, 163, 178, 188, 193, 208, 232, 283, 288, 299, 345, 354, 355, 383, 387, 481, 482

create a new tag from an existing tag, 428

create an alias of a tag, 430

create_permitted?, 48, 49, 50, 73, 186, 346, 348, 356

Creating Tags from Tags, 86, 112

CRUD, 354

CSS, 36, 88, 126, 127, 147, 237, 239, 241, 243, 244, 246, 250, 251, 253, 255, 256, 406, 414, 415, 434, 452, 458, 466, 469, 473

CSS stylesheet, 237, 239

D
dasherize, 446, 447

data flow, 317

database schema, 22, 45, 69, 289, 290, 302, 321

database.yml, 300, 303, 304, 324

Date Scopes, 394, See
def index, 138, 363, 365, 367, 489

default message text, 108

--default-name, 229, 232, 233, 234, 322

Delete, 134, 354

delete-button, 149, 341, 342, 444, 445, 458

--delete-index, 326, 330, 334, 337

destroy_permitted?, 48, 49, 51, 186, 346, 349

dev-user-changer, 443, 470

Directories and Generators, 18, 19

display a list of records, 88

display a single record, 60

display collections of record, 88, 128

Display model data in table form, 134

Displaying Hints, 18, 33

div.page-header, 244, 245, 246, 247, 248

do_transition_action, 266, 385, 386

down-arrow, 474

drop-down, 5, 6, 24, 64, 65, 66, 80, 150, 152, 162

DRY, 80, 315, 339

DRYML, 17, 36, 86, 87, 88, 91, 99, 104, 106, 110, 112, 116, 118, 120, 121, 191, 194, 196, 201, 207, 211, 237, 248, 255, 257, 315, 316, 319, 340, 343, 345, 361, 363, 370, 390, 393, 401, 402, 403, 404, 406, 407, 408, 409, 410, 412, 413, 414, 415, 416, 417, 418, 419, 422, 423, 425, 428, 430, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490

DRYML Guide, 201, 401, 409, 430

E
Edit Page, 86, 149

edit_permitted?, 350, 351, 352, 355

edit.dryml, 211

Editing Auto-Generated Tags, 86, 90

Editing the Navigation Tabs, 18, 61

edit-link, 140, 157, 444, 445

email-address-input, 479

email-address-label, 479

empty-message, 202, 467, 474

enum_string, 65, 66, 182, 205

environment.rb, 212, 324, 327, 328, 488

ERB, 191, 326, 329, 331, 334, 343, 401, 402, 403, 434, 483, 484, 485, 487, 488, 489

error-messages, 150, 154, 155, 479

extending a tag, 114, 428

F
Field Validation, 18, 38

field_names, 35, 190, 389, 390

field-heading-row, 444

field-list, 140, 142, 143, 144, 145, 149, 150, 151, 152, 153, 154, 206, 207, 210, 342, 443, 462, 476, 479

flash components, 218

flexibility, 1, 2, 3, 88, 315, 316, 390, 401, 422, 481

force, 28, 31, 58, 68, 70, 223, 226, 448, 449, 450

force-all, 444, 476

forgot-password, 478

form, 25, 30, 36, 38, 39, 50, 56, 58, 60, 80, 88, 90, 93, 95, 101, 105, 134, 149, 150, 151, 152, 153, 154, 155, 156, 179, 187, 188, 189, 206, 210, 211, 217, 219, 234, 235, 249, 251, 258, 266, 342, 349, 350, 351, 357, 364, 366, 369, 384, 385, 387, 391, 396, 399, 402, 403, 408, 412, 436, 453, 456, 457, 458, 459, 460, 461, 462, 476, 478, 479

Form Tag, 86, 149

format, 44, 109, 123, 189, 218, 365, 366, 445, 448, 450, 489, 490

FusionCharts, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228

G
gem env, 15

gem list, 14

gem update --system, 11

gemcutter, 481, 482

gems, 13, 14, 17, 271, 272, 286, 288, 289, 302, 320, 322, 323, 481

Git, 173, 273, 274, 275, 277

GitHub, 320

github.com, 13, 271, 272, 288, 482, 484, 489

gravatar, 475

gravatar.com, 475

Guest user, 263, 265, 266

GUI, 66, 70, 75

H
has_many, 75, 77, 84, 165, 166, 167, 186, 188, 210, 352, 353, 365, 382, 395, 400, 449, 460, 461, 462, 463, 465, 476, 477

has_many

through relationships, 84

header, 97, 100, 111, 122, 125, 131, 132, 140, 193, 242, 248, 343, 392, 432, 433, 444, 452, 466, 471, 474

heading, 97, 100, 122, 125, 126, 131, 132, 140, 143, 149, 237, 240, 252, 253, 259, 392, 418, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 445, 460, 472, 475, 476, 478, 479

height:, 244, 245, 246, 247, 256

Heroku, 161, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293

heroku create, 287

heroku db

pull, 293

push, 292

heroku git push, 288

Heroku.com, 161, 280, 281, 282, 283, 285, 290, 291, 292, 293

Hobo, x, xi, 5, 6, 7, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 43, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 60, 61, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 80, 81, 82, 84, 87, 88, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 110, 111, 112, 114, 120, 121, 122, 125, 126, 127, 129, 130, 131, 133, 134, 135, 136, 137, 140, 141, 142, 145, 147, 148, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 161, 164, 167, 176, 177, 178, 179, 182, 184, 188, 189, 191, 193, 197, 202, 207, 208, 210, 211, 214, 215, 217, 229, 234, 235, 236, 237, 238, 239, 240, 260, 271, 272, 282, 288, 289, 294, 295, 299, 300, 301, 302, 303, 307, 315, 316, 317, 319, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 350, 351, 352, 353, 354, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 378, 379, 383, 384, 385, 386, 387, 389, 390, 392, 393, 396, 397, 401, 402, 409, 414, 420, 421, 422, 427, 439, 440, 442, 447, 452, 453, 456, 457, 461, 467, 468, 474, 475, 478, 481

Hobo Application Summary, 174, 175

Hobo Controllers, 18, 52, 359

Hobo Index Generation, 311

Hobo Lifecycles, 261, 267, 319, 372

Hobo Migration, 322

Hobo Model Controller, 319

Hobo Scopes, 394

hobo_create, 366, 367

hobo_create_for, 367

hobo_index_for, 367

hobo_migration, 19, 21, 22, 25, 27, 28, 29, 31, 32, 33, 45, 47, 69, 78, 92, 121, 167, 173, 182, 208, 210, 229, 232, 233, 234, 239, 262, 320, 322, 339

hobo_model, 19, 25, 26, 27, 28, 29, 30, 33, 46, 49, 52, 53, 54, 55, 57, 58, 59, 65, 66, 67, 68, 76, 77, 164, 180, 186, 208, 223, 229, 230, 233, 269, 312, 329, 333, 339, 358, 359, 361, 362, 363, 373, 390, 395, 459

hobo_model_controller, 19, 52, 53, 54, 55, 57, 58, 59, 180, 223, 269, 329, 333, 359, 361, 362, 363

hobo_model_resource, 19, 25, 27, 28, 46, 49, 67, 76, 164, 208, 229, 230, 233, 339

hobo_new, 364, 366, 367

hobo_new_for, 367

hobo_rapid, 325, 326, 329, 333

hobo_reorder, 370

hobo_show, 363, 366

hobo_update, 364, 365, 366, 367, 368

hobo_user_model, 325, 326, 329, 331, 333, 358, 460

hobofields, 320

hobosupport, 320

href, name, 415, 448

HTML, 52, 62, 88, 90, 99, 104, 108, 109, 110, 112, 116, 118, 123, 125, 127, 147, 156, 191, 194, 215, 239, 242, 341, 365, 368, 408, 409, 414, 419, 422, 425, 436, 437, 438, 444, 447, 451, 452, 456, 458, 463, 472, 481, 483, 484, 489, 490

I
id_rsa.pub, 279

if-present, 446

implicit, 126, 129, 191, 201, 409, 417, 418, 419

implicit context, 126, 129, 191, 201, 409, 417, 418, 419

--import-tags, 325, 326, 329, 333

include, 7, 19, 41, 54, 55, 88, 96, 188, 189, 221, 260, 330, 334, 348, 358, 359, 365, 366, 382, 383, 387, 392, 395, 399, 419, 421, 436, 446, 449, 453, 454, 458, 459, 462, 473, 476, 477, 486

include-timestamps, 476, 477

index_action, 362, 365

index.dryml, 98, 99, 104, 108, 110, 114, 116, 120, 121, 122, 128, 131, 134, 192, 193, 222, 225, 249, 250, 253, 254, 262, 326, 329, 330, 333, 334, 337, 485

Indexes, 310, 339

Inline Booleans, 392

instance variables, 203, 364, 483

Introduction to Permissions, 18, 45

--invite-only, 323, 329, 330, 333, 334, 335, 336

Invite-only website, 330, 334

is, x, xi, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 34, 36, 38, 39, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 88, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 114, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 133, 134, 136, 137, 138, 141, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 155, 156, 158, 159, 162, 163, 164, 165, 168, 173, 176, 177, 178, 180, 183, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 201, 202, 203, 204, 205, 206, 207, 210, 211, 214, 215, 218, 219, 222, 223, 224, 225, 226, 227, 229, 230, 231, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 252, 253, 255, 256, 257, 261, 262, 263, 264, 265, 266, 267, 271, 272, 276, 280, 282, 288, 289, 295, 297, 300, 302, 303, 304, 306, 311, 313, 315, 316, 317, 319, 320, 321, 322, 324, 328, 330, 331, 332, 334, 337, 339, 340, 341, 342, 343, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 363, 364, 365, 366, 367, 368, 369, 371, 372, 373, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 396, 397, 398, 399, 401, 402, 403, 404, 405, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 479, 481, 482, 483, 484, 486, 487, 488, 489, 490

J
join, 129, 130, 188, 194, 196, 202, 353, 442, 449, 487, 489

K
Key Scopes, 394, See
L
label, 34, 39, 138, 143, 145, 149, 150, 151, 154, 155, 224, 227, 249, 258, 389, 391, 443, 448, 449, 454, 457, 458, 463, 467, 468

labelled-item-list, 478, 479

lifecycle actions, 263, 266, 383

Lifecycle scopes. See
Lifecycles, 261, 267, 319, 332, 371, 372, 378, 379, 384, 385, 440, 468

Lifecycles for Workflow, 261

Lifecyle Scopes, 394

limit, 6, 7, 70, 311, 369, 377, 395, 398, 459

Link to account page, 469

Listing Data in Table Form, 86, 134

Listing Data with the Index Tag, 86

Logged in as, 442, 469

logged-in-as, 470

log-in, 242, 470, 478

login-input, 478

login-label, 478

log-out, 470

lowercase, 446, 447, 449

M
MagicMailer, 373, 379

Making Your Own Tags, 86

Many-to-many relationships, 75

markdown-help, 414

Matz, 17, 416

merge-attrs, 61, 62, 63, 101, 403, 414, 415, 416, 423, 425, 426, 428, 430, 435, 436

method, 44, 49, 50, 56, 59, 65, 94, 98, 112, 114, 138, 182, 183, 187, 203, 204, 223, 226, 312, 313, 315, 346, 347, 349, 350, 351, 353, 355, 357, 358, 361, 362, 364, 365, 366, 367, 368, 369, 370, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 393, 394, 399, 404, 409, 413, 415, 418, 419, 423, 441, 447, 448, 456, 457, 458, 459, 483, 485, 487, 488, 489

method_callable_by?(user, method_name), 355

--migrate, 229, 232, 233, 234, 322

migration, 19, 21, 22, 25, 26, 27, 28, 29, 31, 32, 33, 34, 45, 46, 47, 66, 67, 69, 78, 92, 121, 167, 168, 173, 182, 205, 208, 210, 229, 232, 233, 234, 239, 262, 282, 300, 301, 304, 311, 312, 313, 315, 320, 321, 322, 339, 375, 379, 395

migrations, 22, 32, 76, 234, 311, 321, 339

Model Relationships, 18, 64, 75

model_name, 47, 50, 56, 58, 94, 103, 189, 390, 393

Model-View-Controller, 17, 315, 317

MVC, 17, 164, 315, 317, 372

MySQL, 7, 17, 294, 295, 296, 297, 299, 300, 301, 313

mysysgit, 273

N
name, 5, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 46, 47, 50, 52, 53, 56, 58, 62, 67, 68, 69, 70, 73, 74, 75, 76, 77, 78, 81, 93, 94, 96, 100, 101, 102, 103, 105, 114, 120, 125, 126, 130, 131, 132, 140, 142, 145, 151, 153, 162, 164, 165, 186, 189, 191, 192, 201, 202, 204, 207, 208, 214, 216, 224, 227, 229, 240, 250, 257, 258, 262, 278, 287, 288, 291, 303, 307, 311, 312, 313, 322, 331, 339, 342, 343, 344, 346, 349, 351, 352, 355, 356, 358, 359, 360, 361, 366, 367, 369, 375, 377, 378, 379, 380, 381, 382, 383, 388, 389, 390, 391, 393, 395, 396, 397, 398, 399, 400, 402, 403, 406, 408, 409, 410, 411, 412, 415, 419, 420, 426, 428, 430, 434, 435, 437, 441, 443, 444, 445, 446, 447, 448, 453, 454, 457, 458, 459, 460, 462, 463, 464, 468, 471, 473, 474, 476, 483, 488, 489

name_changed?, 351

name_was, 351

name:, 25, 67, 76, 164, 208, 352, 430

named_scope, 223, 263, 394

Navigation Tabs, 18, 61

nested parameters, 422, 423, 424

never_show, 349, 378

New and Edit Pages With The Form Tag, 86

New tags from old, 425

no-filter, 474

none_changed?, 348, 353

not_, 261, 262, 266, 370, 394, 396, 397, 400

O
only_changed?, 348, 349, 353

options, 8, 17, 44, 49, 50, 140, 205, 215, 222, 228, 250, 258, 262, 274, 281, 282, 302, 312, 313, 322, 323, 329, 365, 366, 369, 378, 379, 380, 381, 386, 453, 454, 459, 460, 461, 462, 470, 474, 475, 476, 490

Oracle, 7, 17, 165, 168, 173, 294, 302, 303, 304, 305, 308, 309, 311

Oracle Object Browser, 309

Oracle XE, 305

order, 39, 64, 75, 87, 88, 101, 102, 108, 112, 138, 145, 203, 208, 210, 219, 220, 222, 248, 263, 313, 315, 320, 323, 355, 356, 361, 366, 370, 392, 395, 399, 409, 410, 412, 429, 434, 435, 439, 455, 462, 464, 472, 481, 482, 486, 489

order_by, 138, 203, 263, 395, 399

owner, 346, 347, 348, 349, 353, 356, 360, 361, 367, 368, 382

P
padding:, 244, 245, 246, 247, 248, 251, 253, 256

page-nav, 97, 122, 469, 475

pages.dryml, 24, 25, 61, 88, 92, 93, 94, 96, 97, 99, 101, 140, 141, 148, 149, 197, 199, 200, 202, 340, 341, 343, 344, 439

param, 97, 100, 101, 104, 106, 108, 110, 111, 112, 114, 117, 118, 122, 123, 125, 131, 132, 138, 140, 143, 147, 149, 150, 152, 154, 155, 157, 198, 202, 203, 249, 250, 253, 255, 258, 259, 263, 369, 404, 406, 407, 408, 409, 412, 413, 414, 415, 420, 421, 423, 424, 425, 426, 428, 429, 430, 431, 435, 436, 475, 485, 488

parameter tag, 106, 108, 109, 112, 116, 117, 118, 119, 123, 126, 134, 143, 144, 145, 147, 151, 153, 159, 262, 404, 408, 410, 421

params, 104, 138, 203, 204, 250, 263, 341, 362, 366, 370, 376, 379, 381, 385, 386, 387, 410, 425, 448, 458

parse_sort_param, 138, 203, 263

password-input, 478

password-label, 478

Permissions, 18, 45, 48, 73, 182, 185, 186, 187, 261, 319, 352, 357

Permissions for data integrity, 187

pie chart, 226, 227, 228

Plugins, 173

plural, 53, 56, 58, 60, 62, 67, 94, 120, 343, 399, 446, 447

polymorphic, 149, 194, 311, 312, 342, 409, 430, 431, 449, 462, 463

polymorphic tag, 430, 431, 449, 462

post comments to more than one table, 229

Q
query-params, 448

R
Rails developers, 22

rake, 22, 32, 229, 232, 233, 234, 289, 323, 328

rake db

create

all, 323

migrate, 22, 32, 229, 232, 233, 234, 289

Rapid Core, 440

Rapid Document Tags, 440, 452

Rapid Editing, 440, 453

Rapid Forms, 440, 456, 457, 458, 459

Rapid Generics, 440, 466

Rapid Lifecycles, 440, 468

Rapid Navigation, 440, 469

Rapid Pages, 471

Rapid Parameter Tag, 144

Rapid Support, 476

Rapid Tag Library, 316, 340, 439, 440

Rapid User Pages, 440, 478

rapid_core.dryml, 439

rapid_document_tags.dryml, 439

rapid_editng.dryml, 439

rapid_forms.dryml, 439

rapid_generics.dryml, 439

rapid_lifecycles.dryml, 439

rapid_navigation.dryml, 439

rapid_pages.dryml, 439

rapid_plus.dryml, 439

rapid_support.dryml, 439

rating, 475

Read, 215, 354, 364

READ_ONLY_ATTRS, 348

recent, 394, 395, 398

Record Collections, 120

record.creatable_by?(user), 355

record.destroyable_by?(user), 355

record.editable_by?(user, attribute=nil), 355

record.updatable_by?(user), 355

record.viewable_by?(user, attribute=nil), 355

redirect_to, 266, 364, 368, 384, 385

relationship declarations, 75, 76, 80

remember-me, 478

remember-me-input, 478

remember-me-label, 478

Removing actions, 176

Reordering, 210

repeat tag, 129, 417

Rich Text, 161, 214

Roles, 182, 382

ruby script/generate, 21, 25, 27, 29, 31, 33, 45, 46, 47, 67, 69, 76, 78, 164, 167, 208, 210, 239, 268, 322, 325, 326, 329, 330, 331, 333, 334, 337, 373

ruby script/generate hobo_subsite, 268

ruby script/server, 23, 45, 64, 65, 75, 78, 90, 168

RubyGems, 8, 11

S
scoped variables, 434, 435

Scopes, 394, 395, 399

Scoping Associations. See
search, xi, 5, 6, 19, 23, 28, 134, 138, 139, 202, 203, 204, 229, 249, 251, 258, 263, 395, 397, 399, 431, 466, 471, 474

search-form, 474

search-submit, 474

Self-closing tags, 436, 437

Show Page, 86, 140, 157

Show Page Tag, 86, 140, 157

show_action, 362, 365

show.dryml, 140, 141, 142, 143, 147, 148, 159, 197, 199, 202, 206, 344, 484, 490

sign-up, 242, 470

Simple log-in page, 478

Simple Scopes, 396

size, 44, 282, 365, 422, 475

skip, 7, 44, 236, 322, 331, 403, 417, 444, 463, 476, 477

skip-associations, 476, 477

--skip-timestamps, 322

sortable-options, 475

sqlite3.dll, 11

SQLite3-ruby gem, 10

state, 27, 29, 30, 31, 33, 57, 64, 70, 75, 261, 262, 263, 264, 265, 312, 348, 350, 357, 372, 374, 375, 376, 377, 378, 379, 380, 381, 387, 395, 396, 398

Static Scopes, 394, See
status_changed?, 347

status_was, 347

stylesheets, 36, 237, 241, 257, 258, 324, 325, 329, 333, 471

submit, 149, 150, 151, 154, 155, 206, 219, 249, 258, 266, 341, 342, 368, 383, 388, 457, 461, 478, 479

Sub-Site, 268, 270

subsite, 268

T
tag polymorphism, 151, 153

taglibs, 24, 61, 75, 87, 91, 92, 96, 114, 120, 122, 131, 191, 194, 197, 202, 216, 229, 240, 257, 322, 325, 329, 333, 340, 436, 456, 466, 468, 483, 485, 486

tbody, 444

test_generators, 324

text-indent:, 244, 247

tfoot, 444

The <a> Tag Hyperlink, 86

thead, 444

theme, 236, 237, 238, 248, 325, 326, 329, 333, 445, 449, 473

this_field, 393, 411, 412, 443, 444, 476

this_field_help, 393

this_field_name, 393

this_parent, 411, 412

timestamps, 27, 29, 30, 33, 65, 66, 67, 68, 76, 77, 186, 322, 395, 444

tnsnames.ora, 307

to, x, xi, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 118, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 173, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 191, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 272, 275, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 299, 300, 301, 302, 303, 304, 306, 307, 308, 311, 312, 313, 315, 316, 317, 319, 320, 321, 322, 323, 328, 329, 330, 331, 333, 334, 337, 339, 340, 341, 342, 343, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 372, 373, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 392, 393, 394, 396, 397, 399, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 479, 481, 482, 483, 485, 486, 487, 488, 489, 490

tr, 444

Trace Utility, 481

trailing colon (

) syntax, 133

transition, 261, 262, 263, 266, 267, 376, 377, 380, 381, 382, 383, 385, 386, 387, 468

transition actions, 261, 262

transitions, 261, 267, 376, 377, 378, 380, 381, 382, 383, 385, 386, 387

U
UI, 6, 28, 33, 36, 43, 50, 54, 55, 75, 80, 90, 97, 101, 102, 187, 289, 357, 389, 390

ul, 104, 111, 114, 123, 193, 201, 246, 253, 255, 256, 259, 418, 423, 435, 460, 461, 466, 469, 470

up-arrow, 474

Update, 11, 38, 44, 48, 49, 50, 51, 52, 55, 57, 58, 59, 60, 61, 73, 138, 162, 180, 186, 187, 203, 206, 207, 212, 223, 230, 231, 233, 234, 246, 247, 268, 269, 304, 341, 342, 345, 346, 347, 348, 349, 350, 351, 353, 354, 355, 358, 359, 360, 362, 364, 365, 366, 367, 368, 372, 376, 384, 385, 426, 453, 454, 457, 458, 468

update_permitted?, 48, 49, 51, 73, 186, 187, 346, 347, 348, 349, 350, 351, 353

upload data to Heroku.com, 291

User Comments, 161, 229

user_find, 354, 366

Users Controller, 183, 331, 335

V
validates_inclusion_of, 41, 43, 357

validates_numericality_of, 39, 40, 43

validates_timeliness, 212

view hints, 35, 189, 389

view_hints, 389, 393

view_permitted?, 48, 50, 186, 346, 349

view-hints, 389, 390, 393

ViewHints, 35, 39, 82, 84, 189, 389, 390, 392, 393

W
with_, 355, 395, 399, 487, 488, 489

without_, 395, 399, 487

Working with the Show Page Tag, 86, 140

Wrapping inside a parameter, 432

Wrapping outside a parameter, 432

X
XML, 2, 90, 99, 218, 222, 223, 224, 226, 227, 340, 366, 408, 410, 436, 437, 438

CategoryAssignment

belongs_to :recipe

belongs_to :category

INNER

 Category

has_many :recipes, :through => :category_assignments

has_many :category_assignments, :dependent => :destroy

OUTER

Recipe

has_many :categories, :through => :category_assignments, :accessible => true

has_many :category_assignments, :dependent => :destroy

OUTER

Figure � SEQ Figure * ARABIC �1�: Download Site for Ruby

Figure � SEQ Figure * ARABIC �2�: Installing Ruby

Figure � SEQ Figure * ARABIC �3�: Creating the Ruby Folder

Figure � SEQ Figure * ARABIC �4�: Choose Start Menu Folder

Figure � SEQ Figure * ARABIC �5�: Ruby Setup Wizard

Figure � SEQ Figure * ARABIC �6�: Select which Sqlite3-ruby gem to install

Figure � SEQ Figure * ARABIC �7�: Sqlite gem installation completion

Figure � SEQ Figure * ARABIC �10�: Site location for the SQLite DLL

Figure � SEQ Figure * ARABIC �11�: Updating the version of RubyGems

Figure � SEQ Figure * ARABIC �12�: Console output from updating RubyGems

Figure � SEQ Figure * ARABIC �13�:Console output from installing Rails

Figure � SEQ Figure * ARABIC �14�: Console output from installing Mongrel

Figure � SEQ Figure * ARABIC �15�: Console output from installing Hobo

Figure � SEQ Figure * ARABIC �16�: Summary of Installed gems

Figure � SEQ Figure * ARABIC �18�: Console output from the "gem env" command

Figure � SEQ Figure * ARABIC �19�: Hobo application folder structure

Figure � SEQ Figure * ARABIC �20�: Location of the migration file

Figure � SEQ Figure * ARABIC �21�: Home page for "My First App"

Figure � SEQ Figure * ARABIC �22�: Drop down selector for the active user

Figure � SEQ Figure * ARABIC �23�: Location of the Rapid templates

Figure � SEQ Figure * ARABIC �25�: Migration file changes

Figure � SEQ Figure * ARABIC �26�: Contacts tab on "My First App"

Figure � SEQ Figure * ARABIC �27�: New Contact page for "My First App"

Figure � SEQ Figure * ARABIC �28�: Remove field from contact model

Figure � SEQ Figure * ARABIC �29�: Creating a Hobo “ViewHints” definition for the Contact model

Figure � SEQ Figure * ARABIC �30�: View of field relabeled using the Hobo viewhints “field_names” method

Figure � SEQ Figure * ARABIC �31�: Adding help text using the Hobo viewhints "field_help" method

Figure � SEQ Figure * ARABIC �32�: Contact entry page with ViewHints enabled

Figure � SEQ Figure * ARABIC �33�: Examining the “rapid-ui.css” file

Figure � SEQ Figure * ARABIC �205�: Adding Body and Game to Comments

Figure � SEQ Figure * ARABIC �206�: Permissions for the Comment model

Figure � SEQ Figure * ARABIC �207�: The auto_actions for the comments_controller

Figure � SEQ Figure * ARABIC �208�: Adding comments to the Game model

Figure � SEQ Figure * ARABIC �209�: Posting comments about a game

Figure � SEQ Figure * ARABIC �212�: Adding comments to courts

Figure � SEQ Figure * ARABIC �216�: Posting comments about a court

Figure � SEQ Figure * ARABIC �34�: Page view of validating presence of name

Figure � SEQ Figure * ARABIC �35�: Page view of double validation error

Figure � SEQ Figure * ARABIC �36�: Adding “validates_numericality_of” validation

Figure � SEQ Figure * ARABIC �38�: Page view of triggering the “validates_numericality_of” error

Figure � SEQ Figure * ARABIC �39�: Page view of uniqueness validation error

Figure � SEQ Figure * ARABIC �40�: Page view of triggering a range validation error

Figure � SEQ Figure * ARABIC �41�: Page view of validation of text length error

Figure � SEQ Figure * ARABIC �42�: Page view of “validates_acceptance_of” error

Figure � SEQ Figure * ARABIC �43�: Welcome to One Table in the Permissions tutorial

Figure � SEQ Figure * ARABIC �44�: Recipes tab

Figure � SEQ Figure * ARABIC �49�: Making the Recipes tab disappear

Figure � SEQ Figure * ARABIC �50�: Error message “The page you were looking for could not be found”

d

Figure � SEQ Figure * ARABIC �53�: Viewing the edit URL

Figure � SEQ Figure * ARABIC �54�: "Unknown action" error page

Figure � SEQ Figure * ARABIC �56�: Customizing the name of a tab

Figure � SEQ Figure * ARABIC �57�: Removing the default Home tab

Figure � SEQ Figure * ARABIC �58�: Renaming a copy of your application

Figure � SEQ Figure * ARABIC �59�: Using "enum_string" to create a drop-down list of Countries

Figure � SEQ Figure * ARABIC �60�: Index page for Countries

Figure � SEQ Figure * ARABIC �61�: Selecting a Country for a Recipe

Figure � SEQ Figure * ARABIC �62�: Active link on Country name in the Recipe show page

Figure � SEQ Figure * ARABIC �63�: The Country show page accessed from the Recipe show page

Figure � SEQ Figure * ARABIC �64�: Editing Hobo Permissions to remove the Country Edit link

Figure � SEQ Figure * ARABIC �65�: The Categories tab on the Four Table app

Figure � SEQ Figure * ARABIC �66�: The Index page for Categories

Figure � SEQ Figure * ARABIC �67�: "Category Assignments" on the Recipe show page

Figure � SEQ Figure * ARABIC �68�: Assignment multiple Categories to a Recipe

Figure � SEQ Figure * ARABIC �69�: Edit page view of a Recipe with multiple Categories assigned

Figure � SEQ Figure * ARABIC �70�: Show page view of Categories assigned to a recipe

Figure � SEQ Figure * ARABIC �71�: Using Hobo ViewHints to enhance the view of related records

Figure � SEQ Figure * ARABIC �72�: Show page for a Category before using ViewHints

Figure � SEQ Figure * ARABIC �79�: The Hobo Rapid <index-page> tag definition in the pages.dryml file

Figure � SEQ Figure * ARABIC �80�: The Recipes Index page

Figure � SEQ Figure * ARABIC �81� : View of the taglibs/auto/rapid folder

Figure � SEQ Figure * ARABIC �82�: Adding the definition of index-page into the application.dryml file

Figure � SEQ Figure * ARABIC �83�: Modifying the “heading” parameter the index-page definition

Figure � SEQ Figure * ARABIC �85�: Adding the <index-page/> tag to index.dryml

Figure � SEQ Figure * ARABIC �87�: Changing the tab order for the main navigation menus

Figure � SEQ Figure * ARABIC �88�: Changing the application name with the app-name tag

Figure � SEQ Figure * ARABIC �89�: The \views\front\index.dryml file after the first modification

Figure � SEQ Figure * ARABIC �90�: The Home page with the first set of custom messages

Figure � SEQ Figure * ARABIC �91�: Passing a parameter to the tag <messages> you created

Figure � SEQ Figure * ARABIC �92�: How the passed parameter displays on the page

Figure � SEQ Figure * ARABIC �93�: Passing three parameters to your <messsages> tag

Figure � SEQ Figure * ARABIC �94�: Page display using your custom <bd-it> tag

Figure � SEQ Figure * ARABIC �95�: Calling <span:> explicitly within to your <bd-it> tag

Figure � SEQ Figure * ARABIC �96�: Adding the custom <more-messages> tag

Figure � SEQ Figure * ARABIC �97�: Page rendering with <more-messages>

Figure � SEQ Figure * ARABIC �98�: Extending the tag <messagex> in application.dryml

Figure � SEQ Figure * ARABIC �99�: Using the extended <messagex> tag

Figure � SEQ Figure * ARABIC �100�: Page view of the next additions to <messagex>

Figure � SEQ Figure * ARABIC �102�: Page view of overriding the default message 0.

Figure � SEQ Figure * ARABIC �104�: The Four Tables application as we left it

Figure � SEQ Figure * ARABIC �105�: Creating the /views/recipes/index.dryml file

Figure � SEQ Figure * ARABIC �107�: How the <collection> tag iterates

Figure � SEQ Figure * ARABIC �108�: Using the <a> hyperlink tag within a collection

Figure � SEQ Figure * ARABIC �109�: Specifying what <collection> tag will display

Figure � SEQ Figure * ARABIC �110�: Changing the display style within <collection>

Figure � SEQ Figure * ARABIC �111�: Changing the implicit context within <collection>

Figure � SEQ Figure * ARABIC �112�: Creating comma-delimited multi-valued lists in a <collection>

Figure � SEQ Figure * ARABIC �113�: Adding the count of values in the <card> tag

Figure � SEQ Figure * ARABIC �114�: Using "if---else" within a tag to display a custom message

Figure � SEQ Figure * ARABIC �115�: Using <table-plus> to display a columnar list

Figure � SEQ Figure * ARABIC �116�: Adding a "Categories Count" to <table-plus

Figure � SEQ Figure * ARABIC �117�: Adding a comma-delimited list within a <table-plus> column

Figure � SEQ Figure * ARABIC �118�: adding a search facility to <table-plus> using Hobo’s apply_scopes method

Figure � SEQ Figure * ARABIC �119�: Found Recipes searching for "French"

Figure � SEQ Figure * ARABIC �120�: The Recipe show page before modification

Figure � SEQ Figure * ARABIC �121�: Recipe show page after removing three critical lines of code

Figure � SEQ Figure * ARABIC �122�: Using the <field=list> tag to choose which fields to display

Figure � SEQ Figure * ARABIC �123�: Using the <collection-heading:> tag

Figure � SEQ Figure * ARABIC �124�: Using the <body-label:> parameter tag

Figure � SEQ Figure * ARABIC �125�: Using the <country-label:> parameter to change the label on the page

Figure � SEQ Figure * ARABIC �126�: A new show page for Recipes

Figure � SEQ Figure * ARABIC �127�: Page view of using the replace attribute in the <content-body:> parameter tag

Figure � SEQ Figure * ARABIC �128�: Default Hobo form rendering

Figure � SEQ Figure * ARABIC �129�: Modifying the <field-list> tag to remove fields on a page

Figure � SEQ Figure * ARABIC �130�: First step using the <input> tag

Figure � SEQ Figure * ARABIC �131�: Adding the label for the filed "Title"

Figure � SEQ Figure * ARABIC �132�: Adding the rest of the input fields

Figure � SEQ Figure * ARABIC �133�: Generating an active link to a list of Countries

Figure � SEQ Figure * ARABIC �134�: The Countries index page activated by your custom link

Figure � SEQ Figure * ARABIC �135�: Constructing a custom link to the "New Country" page

Figure � SEQ Figure * ARABIC �137�: Adding "has_many :requirements" to the Project class

Figure � SEQ Figure * ARABIC �146�: New Requirement page

Figure � SEQ Figure * ARABIC �163�: Adding the use of Role in Permissions

Figure � SEQ Figure * ARABIC �164�: Modifying the “update_permitted?” method in the Requirement model

Figure � SEQ Figure * ARABIC �167�: The default blank “project_hints.rb” file for the “ProjectHints” class

Figure � SEQ Figure * ARABIC �172�: Modifying "\front\index.dryml"

Figure � SEQ Figure * ARABIC �174�: Newly modfied home page

Figure � SEQ Figure * ARABIC �177�: Listing the contents for the "\views\taglibs\auto\rapid" folder

Figure � SEQ Figure * ARABIC �178�: contents of the pages.dryml file

Figure � SEQ Figure * ARABIC �182�: Using the Hobo “<table-plus>” feature to enhance the Requirements listing

Figure � SEQ Figure * ARABIC �183�: Enhancing the <table-plus> listing

Figure � SEQ Figure * ARABIC �218�: The NIFA banner image

Figure � SEQ Figure * ARABIC �220�: The NIFA main navigation bar

Figure � SEQ Figure * ARABIC �221�: NIFA navigation panels

Figure � SEQ Figure * ARABIC �222�: NIFA footer navigation

Figure � SEQ Figure * ARABIC �285�: Download site for MySQL

Figure � SEQ Figure * ARABIC �286�: Using the .msi file to install MySQL on Windows

Figure � SEQ Figure * ARABIC �289�: Configure MySQL Server

Figure � SEQ Figure * ARABIC �229�: The two images used in NIFA's top banner

Figure � SEQ Figure * ARABIC �298�: Installing the Oracle ruby gems

(1) Does a view for the action tag exist?

Then use it.

Example:

views/contacts/index.dryml

(2) Does index tag definition exist in application.dryml? Then use it.

Example:

<def tag="index-page" for="Contact">

(3) If (1) or (2) are false then use the

auto-generated action tag def in pages.dryml�

Figure � SEQ Figure * ARABIC �48�: Page view of a Recipe

Figure � SEQ Figure * ARABIC �73�: Category page view after adding ViewHints "children :recipes" declaratio

n

Figure � SEQ Figure * ARABIC �74�: Folder view of \taglibs\auto\rapid

Figure � SEQ Figure * ARABIC �75�: Front page view of the Four Table application

� NOTE: At the time of writing, support for the model_name� XE "model_name" � declaration in Hobo� XE "Hobo" � Rapid is� XE "is" � partial. The underlying class name� XE "name" � may still be used in places.

� However, this does substantially slow down method� XE "method" �_missing on your model’s class. If ActiveRecord::Base.method_missing is� XE "is" � used often, you may wish to� XE "to" � disable this module.

PAGE
[image: image344.png]

